• Title/Summary/Keyword: Noise Path Analysis

Search Result 272, Processing Time 0.016 seconds

Retrieval and Validation of Precipitable Water Vapor using GPS Datasets of Mobile Observation Vehicle on the Eastern Coast of Korea

  • Kim, Yoo-Jun;Kim, Seon-Jeong;Kim, Geon-Tae;Choi, Byoung-Choel;Shim, Jae-Kwan;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.365-382
    • /
    • 2016
  • The results from the Global Positioning System (GPS) measurements of the Mobile Observation Vehicle (MOVE) on the eastern coast of Korea have been compared with REFerence (REF) values from the fixed GPS sites to assess the performance of Precipitable Water Vapor (PWV) retrievals in a kinematic environment. MOVE-PWV retrievals had comparatively similar trends and fairly good agreements with REF-PWV with a Root-Mean-Square Error (RMSE) of 7.4 mm and $R^2$ of 0.61, indicating statistical significance with a p-value of 0.01. PWV retrievals from the June cases showed better agreement than those of the other month cases, with a mean bias of 2.1 mm and RMSE of 3.8 mm. We further investigated the relationships of the determinant factors of GPS signals with the PWV retrievals for detailed error analysis. As a result, both MultiPath (MP) errors of L1 and L2 pseudo-range had the best indices for the June cases, 0.75-0.99 m. We also found that both Position Dilution Of Precision (PDOP) and Signal to Noise Ratio (SNR) values in the June cases were better than those in other cases. That is, the analytical results of the key factors such as MP errors, PDOP, and SNR that can affect GPS signals should be considered for obtaining more stable performance. The data of MOVE can be used to provide water vapor information with high spatial and temporal resolutions in the case of dramatic changes of severe weather such as those frequently occurring in the Korean Peninsula.

Measurement of Vertical-Directional DTV Signal Level Using a Multi-Copter (멀티콥터를 이용한 수직방향 DTV 신호 레벨 측정)

  • Park, Hyung-Do;Lim, Sol;Kim, Dae Jin
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.372-384
    • /
    • 2014
  • DTV field tests have been performed to measure field strength and to check reception ratio on indoor and outdoor sites. They use an antenna of 9m to measure DTV signal in case of outdoor measurement on the road. Modern skyscrapers require the analysis of vertical-directional wave propagation by measuring vertical-directional DTV signal. Even if the field strength is above the reception threshold of $43dB{\mu}V/m$, the reception is impossible in case of strong multi-path or high impulse noise. So, vertical-directional field measurement is essential in environment of tall buildings. In this paper, we developed an octo type multi-copter to measure vertical-directional DTV signal level. A compact and portable DTV signal level meter, an antenna, a microwave transmitter for data transmission, and a recording equipment are equipped in the multi-copter. Three different sites are selected to test the measurement system. Developed measurement system using the multi-copter is very useful in measuring vertical-directional DTV signal, especially in apartments, non-accessible area by vehicles, and forbidden areas.