A study on Convergence Weapon Systems of Self propelled Mobile Mines and Supercavitating Rocket Torpedoes (자항 기뢰와 초공동 어뢰의 융복합 무기체계 연구)
-
- Maritime Security
- /
- v.7 no.1
- /
- pp.31-60
- /
- 2023
This study proposes a new convergence weapon system that combines the covert placement and detection abilities of a self-propelled mobile mine with the rapid tracking and attack abilities of supercavitating rocket torpedoes. This innovative system has been designed to counter North Korea's new underwater weapon, 'Haeil'. The concept behind this convergence weapon system is to maximize the strengths and minimize the weaknesses of each weapon type. Self-propelled mobile mines, typically placed discreetly on the seabed or in the water, are designed to explode when a vessel or submarine passes near them. They are generally used to defend or control specific areas, like traditional sea mines, and can effectively limit enemy movement and guide them in a desired direction. The advantage that self-propelled mines have over traditional sea mines is their ability to move independently, ensuring the survivability of the platform responsible for placing the sea mines. This allows the mines to be discreetly placed even deeper into enemy lines, significantly reducing the time and cost of mine placement while ensuring the safety of the deployed platforms. However, to cause substantial damage to a target, the mine needs to detonate when the target is very close - typically within a few yards. This makes the timing of the explosion crucial. On the other hand, supercavitating rocket torpedoes are capable of traveling at groundbreaking speeds, many times faster than conventional torpedoes. This rapid movement leaves little room for the target to evade, a significant advantage. However, this comes with notable drawbacks - short range, high noise levels, and guidance issues. The high noise levels and short range is a serious disadvantage that can expose the platform that launched the torpedo. This research proposes the use of a convergence weapon system that leverages the strengths of both weapons while compensating for their weaknesses. This strategy can overcome the limitations of traditional underwater kill-chains, offering swift and precise responses. By adapting the weapon acquisition criteria from the Defense force development Service Order, the effectiveness of the proposed system was independently analyzed and proven in terms of underwater defense sustainability, survivability, and cost-efficiency. Furthermore, the utility of this system was demonstrated through simulated scenarios, revealing its potential to play a critical role in future underwater kill-chain scenarios. However, realizing this system presents significant technical challenges and requires further research.
In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.
The purpose of this experiment is to know the relation of the detection and characterization of liver's diseases as comparison of finding at MR imaging using a Ferucarbotran (SPIO) and Gd-EOB-DTPA (Primovist) agents in diffuse liver disease. A total of 50 patients (25 men and 25 women, mean age: 50 years) with liver diseases were investigated at 3.0T machine (GE, General Electric Medical System, Excite HD) "with 8 Ch body coil for comparison of diseases and contrast's uptake relation, which used the LAVA, MGRE." All images were performed on the same location with before and after Ferucarbotran and Gd-EOB-DTPA administrations (p<0.05). Contrast to noise ratio of Ferucarbotran and Gd-EOB-DTPA in the HCC were
Currently, the development of direct conversion radiation detector using photoconductor materials is progressing in widely. Among of theses photoconductor materials, mercuric iodide compound than amorphous selenium has excellent absorption and sensitivity of high energy radiation. Also, the detection efficiency of signal generated in photoconductor film varies by electric filed and geometric distribution according to top-bottom electrode size. Therefore, in this work, the x-ray detection characteristics are investigated about the size of top electrode in
Inductively Coupled Plasma Dynamic Reaction Cell Quadrupole Mass Spectrometry (ICP-DRC-QMS) was characterized for the detection of the six naturally occurring calcium isotopes. The effect of the operating conditions of the DRC system was studied to get the best signal-to-noise ratio. This experiment shows that the potentially interfering ions such as
Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
Purpose : Large exon deletions in the DMD gene are found in about 60% of DMD/BMD patients. Multiplex PCR has been employed to detect the deletion mutation, which frequently generates noise PCR products due to the presence of multiple primers in a single reaction as well as the stringency of PCR conditions. This often leads to a false-negative or false-positive result. To address this problematic issue, we introduced the dual primer oligonucleotide (DPO) system. DPO contains two separate priming regions joined by a polydeoxyinosine linker that results in high PCR specificity even under suboptimal PCR conditions. Methods : We tested 50 healthy male controls, 50 patients with deletion mutation as deletion-positive patient controls, and 20 patients with no deletions as deletion-negative patient controls using DPO-multiplex PCR. Both the presence and extent of deletion were verified by simplex PCR spanning the promoter region (PM) and 18 exons including exons 3, 4, 6, 8, 12, 13, 17, 19, 43-48, 50-52, and 60 in all 120 controls. Results : DPO-multiplex PCR showed 100% sensitivity and specificity for the detection a deletion. However, it showed 97.1% sensitivity and 100% specificity for determining the extent of deletions. Conclusion : The DPO-multiplex PCR method is a useful molecular test to detect large deletions of DMD for the diagnosis of patients with DMD/BMD because it is easy to perform, fast, and cost-effective and has excellent sensitivity and specificity.
The Principal component analysis (PCA) is a well-known data analysis method that is useful in linear feature extraction and data compression. The PCA is a linear transformation that applies an orthogonal rotation to the original data, so as to maximize the retained variance. PCA is a classical technique for obtaining an optimal overall mapping of linearly dependent patterns of correlation between variables (e.g. neurons). PCA provides, in the mean-squared error sense, an optimal linear mapping of the signals which are spread across a group of variables. These signals are concentrated into the first few components, while the noise, i.e. variance which is uncorrelated across variables, is sequestered in the remaining components. PCA has been used extensively to resolve temporal patterns in neurophysiological recordings. Because the retinal signal is stochastic process, PCA can be used to identify the retinal spikes. With excised rabbit eye, retina was isolated. A piece of retina was attached with the ganglion cell side to the surface of the microelectrode array (MEA). The MEA consisted of glass plate with 60 substrate integrated and insulated golden connection lanes terminating in an 8