• Title/Summary/Keyword: Noise Classification

Search Result 669, Processing Time 0.028 seconds

Analysis of Voice Quality Features and Their Contribution to Emotion Recognition (음성감정인식에서 음색 특성 및 영향 분석)

  • Lee, Jung-In;Choi, Jeung-Yoon;Kang, Hong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.771-774
    • /
    • 2013
  • This study investigates the relationship between voice quality measurements and emotional states, in addition to conventional prosodic and cepstral features. Open quotient, harmonics-to-noise ratio, spectral tilt, spectral sharpness, and band energy were analyzed as voice quality features, and prosodic features related to fundamental frequency and energy are also examined. ANOVA tests and Sequential Forward Selection are used to evaluate significance and verify performance. Classification experiments show that using the proposed features increases overall accuracy, and in particular, errors between happy and angry decrease. Results also show that adding voice quality features to conventional cepstral features leads to increase in performance.

Classification of Environmentally Distorted Acoustic Signals in Shallow Water Using Neural Networks : Application to Simulated and Measured Signal

  • Na, Young-Nam;Park, Joung-Soo;Chang, Duck-Hong;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1E
    • /
    • pp.54-65
    • /
    • 1998
  • This study attempts to test the classifying performance of a neural network and thereby examine its applicability to the signals distorted in a shallow water environment. Linear frequency modulated(LFM) signals are simulated by using an acoustic model and also measured through sea experiment. The network is constructed to have three layers and trained on both data sets. To get normalized power spectra as feature vectors, the study considers the three transforms : shot-time Fourier transform (STFT), wavelet transform (WT) and pseudo Wigner-Ville distribution (PWVD). After trained on the simulated signals over water depth, the network gives over 95% performance with the signal to noise ratio (SNR) being up to-10 dB. Among the transforms, the PWVD presents the best performance particularly in a highly noisy condition. The network performs worse with the summer sound speed profile than with the winter profile. It is also expected to present much different performance by the variation of bottom property. When the network is trained on the measured signals, it gives a little better results than that trained on the simulated data. In conclusion, the simulated signals are successfully applied to training a network, and the trained network performs well in classifying the signals distorted by a surrounding environment and corrupted by noise.

  • PDF

A Study on Accuracy Improvement for Estimation of Vehicle Information Using BWIM Methodology (BWIM방법을 이용한 차량 정보 추정시 정밀도 향상 방안에 관한 연구)

  • Hwang, Hyo-Sang;Kyung, Kab-Soo;Lee, Hee-Hyun;Jeon, Jun-Chang
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.63-73
    • /
    • 2013
  • Dynamic strain history curve measured in the field is influenced by various factors such as vehicle type, speed, noise, temperature and running location etc.. Because such curve is used for vehicle weight estimation methodology suggested by Moses, exact strain history curve is the most important thing for exact estimation of vehicle weight. In this paper, effect of such factors mentioned above is investigated on the measured strain history curves, and results of weight estimation of vehicles are discussed quantitatively. From this study, it was known that temperature effect contained in the strain history curve measured for long time in-site gives the biggest effect on result of weight estimation and it can be removed by using the mode value. Furthermore, gross vehicle weight can be estimated within 5% error corresponding to A class of the European classification if effects of temperature and noise are removed and vehicle properties such as speed, axle arrangement and running location are considered properly.

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

PVC Classification Algorithm Through Efficient R Wave Detection

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.338-345
    • /
    • 2013
  • Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation like ventricular fibrillation and ventricular tachycardia in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and the prevention of possible life threatening cardiac diseases. Most methods for detecting arrhythmia require pp interval, or the diversity of P wave morphology, but they are difficult to detect the p wave signal because of various noise types. Thus, it is necessary to use noise-free R wave. So, the new approach for the detection of PVC is presented based on the rhythm analysis and the beat matching in this paper. For this purpose, we removed baseline wandering of low frequency band and made summed signals that are composed of two high frequency bands including the frequency component of QRS complex using the wavelet filter. And then we designed R wave detection algorithm using the adaptive threshold and window through RR interval. Also, we developed algorithm to classify PVC using RR interval. The performance of R wave and PVC detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate average detection rate of 99.76%, sensitivity of 99.30% and specificity of 98.66%; accuracy respectively for R wave and PVC detection.

An implementation of automated ECG interpretation algorithm and system(I) - Introduction of YECGA (심전도 자동 진단 알고리즘 및 장치 구현(I) - YECGA 개요)

  • Kweon, H.J.;Jeong, K.S.;Chung, S.J.;Choi, S.J.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.175-178
    • /
    • 1996
  • The purpose of this thesis is the propose of various signal processing algorithm for the ECG(electrocardiogram) and the design of realtime automated ECG analyzer feasible with these algorithms. The algorithms are composed of (1)filtering procedure fer the estimation and removal of baseline drift, 60Hz power line interference, and muscle artifacts (2)detection procedure of QRS complex and P wave (3)typification procedure for the pattern classification according to the morphologies (4) selection of representative beat, significant point and wave boundary decision procedure and (5) parameter extraction and diagnosis procedure. All verifications are carried out between the algorithms proposed in this paper and other algorithms already proposed by many researchers, for the objective comparison in each procedure. The efficiency of proposed algorithms are demonstrated with the aid of internationally validated CSE database and the performances of filtering procedure are compared on artificial noise signal as well as actual ECG signals with appropriate noise components. for the comparison on the performance of designed automated ECG analyzer, the diagnosis results were compared with ECG analyzer manufactered by Fukuda denshi in Japan.

  • PDF

Study on Rub Vibration of Rotary Machine for Turbine Blade Diagnosis (터빈 블레이드 진단을 위한 회전기계 마찰 진동에 관한 연구)

  • Yu, Hyeon Tak;Ahn, Byung Hyun;Lee, Jong Myeong;Ha, Jeong Min;Choi, Byeong Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.714-720
    • /
    • 2016
  • Rubbing and misalignment are the most usual faults that occurs in rotating machinery and with them severe effect on power plant availability. Especially blade rubbing is hard to detect on FFT spectrum using the vibration signal. In this paper, the possibility of feature analysis of vibration signal is confirmed under blade rubbing and misalignment condition. And the lab-scale rotor test device provides the blade rubbing and shaft misalignment modes. Feature selection based on GA (genetic algorithm) is processed by the extracted feature of the time domain. Then, classification of the features is analyzed by using SVM (support vector machine) which is one of the machine learning algorithm. The results of features selection based on GA compared with those based on PCA (principal component analysis). According to the results, the possibility of feature analysis is confirmed. Therefore, blade rubbing and shaft misalignment can be diagnosed by feature of vibration signal.

Application of Lamb Waves and Probabilistic Neural Networks for Health Monitoring of Joint Steel Structures (강 구조물 접합부의 건전성 감시를 위한 램 웨이브와 확률 신경망의 적용)

  • Park, Seung-Hee;Lee, Jong-Jae;Yun, Chung-Bang;Roh, Yong-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.625-632
    • /
    • 2004
  • This study presents the NDE (non-destructive evaluation) technique for detecting the loosened bolts on joint steel structures on the basis of TOF (time of flight) and amplitudes of Lamb waves. Probabilistic neural network (PNN) technique which is an effective tool for pattern classification problem was applied to the damage estimation using PZT induced Lamb waves. Two kinds of damages were introduced by dominant damages (DD) which mean loosened bolts within the Lamb waves beam width and minor damages (MD) which mean loosened bolts out of the Lamb waves beam width. They were investigated for the establishment of the optimal decision boundaries which divide each damage class's region including the intact class. In this study, the applicability of the probabilistic neural networks was identified through the test results for the damage cases within and out of wave beam path. It has been found that the present methods are very efficient and reasonable in predicting the loosened bolts on the joint steel structures probabilistically.

  • PDF

Sub-Pixel Analysis of Hyperspectral Image Using Linear Spectral Mixing Model and Convex Geometry Concept

  • Kim, Dae-Sung;Kim, Yong-Il;Lim, Young-Jae
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • In the middle-resolution remote sensing, the Ground Sampled Distance (GSD) that the detector senses and samples is generally larger than the actual size of the objects (or materials) of interest, and so several objects are embedded in a single pixel. In this case, as it is impossible to detect these objects by the conventional spatial-based image processing techniques, it has to be carried out at sub-pixel level through spectral properties. In this paper, we explain the sub-pixel analysis algorithm, also known as the Linear Spectral Mixing (LSM) model, which has been experimented using the Hyperion data. To find Endmembers used as the prior knowledge for LSM model, we applied the concept of the convex geometry on the two-dimensional scatter plot. The Atmospheric Correction and Minimum Noise Fraction techniques are presented for the pre-processing of Hyperion data. As LSM model is the simplest approach in sub-pixel analysis, the results of our experiment is not good. But we intend to say that the sub-pixel analysis shows much more information in comparison with the image classification.

  • PDF

Design of MUSIC Algorithm for DOA estimation (도래방향 추정을 위한 MUSIC 알고리즘의 설계)

  • Park, Byung-Woo;Jeong, Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.189-194
    • /
    • 2006
  • In this paper, design of MUSIC algorithm, which is one of high resolution DOA (direction of arrival) estimation techniques was studied. Generally the complex-valued correlation matrix of MUSIC algorithm is transformed to unitary matrix or matrix expansion for the real hardware implementation. Using the orthogonality between the noise subspace eigenvectors and the steering vectors corresponding to signal component, we estimate DOA with the real-valued computation between steering vectors and noise subspace eigenvectors. The DOA algorithm was designed with VHDL models with considerations of 2 elements and 1 incident wave and its simulation results are derived.

  • PDF