• Title/Summary/Keyword: Nodes Clustering

Search Result 463, Processing Time 0.031 seconds

A Clustering Algorithm using Self-Organizing Feature Maps (자기 조직화 신경망을 이용한 클러스터링 알고리듬)

  • Lee, Jong-Sub;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.257-264
    • /
    • 2005
  • This paper suggests a heuristic algorithm for the clustering problem. Clustering involves grouping similar objects into a cluster. Clustering is used in a wide variety of fields including data mining, marketing, and biology. Until now there are a lot of approaches using Self-Organizing Feature Maps(SOFMs). But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of k output-layer nodes, if they want to make k clusters. This approach has problems to classify elaboratively. This paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We can find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. We use the well known IRIS data as an experimental data. Unsupervised clustering of IRIS data typically results in 15 - 17 clustering error. However, the proposed algorithm has only six clustering errors.

Intelligent Clustering in Vehicular ad hoc Networks

  • Aadil, Farhan;Khan, Salabat;Bajwa, Khalid Bashir;Khan, Muhammad Fahad;Ali, Asad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3512-3528
    • /
    • 2016
  • A network with high mobility nodes or vehicles is vehicular ad hoc Network (VANET). For improvement in communication efficiency of VANET, many techniques have been proposed; one of these techniques is vehicular node clustering. Cluster nodes (CNs) and Cluster Heads (CHs) are elected or selected in the process of clustering. The longer the lifetime of clusters and the lesser the number of CHs attributes to efficient networking in VANETs. In this paper, a novel Clustering algorithm is proposed based on Ant Colony Optimization (ACO) for VANET named ACONET. This algorithm forms optimized clusters to offer robust communication for VANETs. For optimized clustering, parameters of transmission range, direction, speed of the nodes and load balance factor (LBF) are considered. The ACONET is compared empirically with state of the art methods, including Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) based clustering techniques. An extensive set of experiments is performed by varying the grid size of the network, the transmission range of nodes, and total number of nodes in network to evaluate the effectiveness of the algorithms in comparison. The results indicate that the ACONET has significantly outperformed the competitors.

Efficient and Secure Routing Protocol forWireless Sensor Networks through SNR Based Dynamic Clustering Mechanisms

  • Ganesh, Subramanian;Amutha, Ramachandran
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.422-429
    • /
    • 2013
  • Advances in wireless sensor network (WSN) technology have enabled small and low-cost sensors with the capability of sensing various types of physical and environmental conditions, data processing, and wireless communication. In the WSN, the sensor nodes have a limited transmission range and their processing and storage capabilities as well as their energy resources are limited. A triple umpiring system has already been proved for its better performance in WSNs. The clustering technique is effective in prolonging the lifetime of the WSN. In this study, we have modified the ad-hoc on demand distance vector routing by incorporating signal-to-noise ratio (SNR) based dynamic clustering. The proposed scheme, which is an efficient and secure routing protocol for wireless sensor networks through SNR-based dynamic clustering (ESRPSDC) mechanisms, can partition the nodes into clusters and select the cluster head (CH) among the nodes based on the energy, and non CH nodes join with a specific CH based on the SNR values. Error recovery has been implemented during the inter-cluster routing in order to avoid end-to-end error recovery. Security has been achieved by isolating the malicious nodes using sink-based routing pattern analysis. Extensive investigation studies using a global mobile simulator have shown that this hybrid ESRP significantly improves the energy efficiency and packet reception rate as compared with the SNR unaware routing algorithms such as the low energy aware adaptive clustering hierarchy and power efficient gathering in sensor information systems.

A Clustering for Ground Nodes of HAPS Network (HAP 네트워크 지상 노드의 클러스터링)

  • Song, Ha-Yoon
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.87-99
    • /
    • 2008
  • High Altitude Platform network systems utilize Unmanned Aerial Vehicle as routers for ground node communication. For this purpose, geographical clustering of ground nodes must be required. In this paper, we assume mobile ground nodes over wide area and the clusters composed of ground nodes are identified. UAVs can be positioned at the point of centroid of clusters. The number of UAVs are derived from the area size and the number of ground nodes deployed in that area. From the simulation and application of clustering algorithms, we showed visual clustering results with dynamic variance of number of ground nodes.

  • PDF

An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 계층적 클러스터링 알고리즘)

  • Cha, Si-Ho;Lee, Jong-Eon;Choi, Seok-Man
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • Clustering allows hierarchical structures to be built on the nodes and enables more efficient use of scarce resources, such as frequency spectrum, bandwidth, and energy in wireless sensor networks (WSNs). This paper proposes a hierarchical clustering algorithm called EEHC which is more energy efficient than existing algorithms for WSNs, It introduces region node selection as well as cluster head election based on the residual battery capacity of nodes to reduce the costs of managing sensor nodes and of the communication among them. The role of cluster heads or region nodes is rotated among nodes to achieve load balancing and extend the lifetime of every individual sensor node. To do this, EEHC clusters periodically to select cluster heads that are richer in residual energy level, compared to the other nodes, according to clustering policies from administrators. To prove the performance improvement of EEHC, the ns-2 simulator was used. The results show that it can reduce the energy and bandwidth consumption for organizing and managing WSNs comparing it with existing algorithms.

Gated Multi-channel Network Embedding for Large-scale Mobile App Clustering

  • Yeo-Chan Yoon;Soo Kyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1620-1634
    • /
    • 2023
  • This paper studies the task of embedding nodes with multiple graphs representing multiple information channels, which is useful in a large volume of network clustering tasks. By learning a node using multiple graphs, various characteristics of the node can be represented and embedded stably. Existing studies using multi-channel networks have been conducted by integrating heterogeneous graphs or limiting common nodes appearing in multiple graphs to have similar embeddings. Although these methods effectively represent nodes, it also has limitations by assuming that all networks provide the same amount of information. This paper proposes a method to overcome these limitations; The proposed method gives different weights according to the source graph when embedding nodes; the characteristics of the graph with more important information can be reflected more in the node. To this end, a novel method incorporating a multi-channel gate layer is proposed to weigh more important channels and ignore unnecessary data to embed a node with multiple graphs. Empirical experiments demonstrate the effectiveness of the proposed multi-channel-based embedding methods.

An energy efficient clustering scheme by adjusting group size in zigbee environment (Zigbee 환경에서 그룹 크기 조정에 의한 에너지 효율적인 클러스터링 기법)

  • Park, Jong-Il;Lee, Kyoung-Hwa;Shin, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.342-348
    • /
    • 2010
  • The wireless sensor networks have been extensively researched. One of the issues in wireless sensor networks is a developing energy-efficient clustering protocol. Clustering algorithm provides an effective way to extend the lifetime of a wireless sensor networks. In this paper, we proposed an energy efficient clustering scheme by adjusting group size. In sensor network, the power consumption in data transmission between sensor nodes is strongly influenced by the distance of two nodes. And cluster size, that is the number of cluster member nodes, is also effected on energy consumption. Therefore we proposed the clustering scheme for high energy efficiency of entire sensor network by controlling cluster size according to the distance between cluster header and sink.

A New Approach for Hierarchical Dividing to Passenger Nodes in Passenger Dedicated Line

  • Zhao, Chanchan;Liu, Feng;Hai, Xiaowei
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.694-708
    • /
    • 2018
  • China possesses a passenger dedicated line system of large scale, passenger flow intensity with uneven distribution, and passenger nodes with complicated relations. Consequently, the significance of passenger nodes shall be considered and the dissimilarity of passenger nodes shall be analyzed in compiling passenger train operation and conducting transportation allocation. For this purpose, the passenger nodes need to be hierarchically divided. Targeting at problems such as hierarchical dividing process vulnerable to subjective factors and local optimum in the current research, we propose a clustering approach based on self-organizing map (SOM) and k-means, and then, harnessing the new approach, hierarchical dividing of passenger dedicated line passenger nodes is effectuated. Specifically, objective passenger nodes parameters are selected and SOM is used to give a preliminary passenger nodes clustering firstly; secondly, Davies-Bouldin index is used to determine the number of clusters of the passenger nodes; and thirdly, k-means is used to conduct accurate clustering, thus getting the hierarchical dividing of passenger nodes. Through example analysis, the feasibility and rationality of the algorithm was proved.

A Clustering Algorithm Using the Ordered Weight of Self-Organizing Feature Maps (자기조직화 신경망의 정렬된 연결강도를 이용한 클러스터링 알고리즘)

  • Lee Jong-Sup;Kang Maing-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.41-51
    • /
    • 2006
  • Clustering is to group similar objects into clusters. Until now there are a lot of approaches using Self-Organizing feature Maps (SOFMS) But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of c output-layer nodes, if they want to make c clusters. This approach has problems to classify elaboratively. This Paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We un find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. The proposed algorithm was tested on well-known IRIS data and TSPLIB. The results of this computational study demonstrate the superiority of the proposed algorithm.

EETCA: Energy Efficient Trustworthy Clustering Algorithm for WSN

  • Senthil, T.;Kannapiran, Dr.B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5437-5454
    • /
    • 2016
  • A Wireless Sensor Network (WSN) is composed of several sensor nodes which are severely restricted to energy and memory. Energy is the lifeblood of sensors and thus energy conservation is a critical necessity of WSN. This paper proposes a clustering algorithm namely Energy Efficient Trustworthy Clustering algorithm (EETCA), which focuses on three phases such as chief node election, chief node recycling process and bi-level trust computation. The chief node election is achieved by Dempster-Shafer theory based on trust. In the second phase, the selected chief node is recycled with respect to the current available energy. The final phase is concerned with the computation of bi-level trust, which is triggered for every time interval. This is to check the trustworthiness of the participating nodes. The nodes below the fixed trust threshold are blocked, so as to ensure trustworthiness. The system consumes lesser energy, as all the nodes behave normally and unwanted energy consumption is completely weeded out. The experimental results of EETCA are satisfactory in terms of reduced energy consumption and prolonged lifetime of the network.