• Title/Summary/Keyword: Node mobility

Search Result 571, Processing Time 0.03 seconds

Cellular Traffic Offloading through Opportunistic Communications Based on Human Mobility

  • Li, Zhigang;Shi, Yan;Chen, Shanzhi;Zhao, Jingwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.872-885
    • /
    • 2015
  • The rapid increase of smart mobile devices and mobile applications has led to explosive growth of data traffic in cellular network. Offloading data traffic becomes one of the most urgent technical problems. Recent work has proposed to exploit opportunistic communications to offload cellular traffic for mobile data dissemination services, especially for accepting large delayed data. The basic idea is to deliver the data to only part of subscribers (called target-nodes) via the cellular network, and allow target-nodes to disseminate the data through opportunistic communications. Human mobility shows temporal and spatial characteristics and predictability, which can be used as effective guidance efficient opportunistic communication. Therefore, based on the regularity of human mobility we propose NodeRank algorithm which uses the encounter characteristics between nodes to choose target nodes. Different from the existing work which only using encounter frequency, NodeRank algorithm combined the contact time and inter-contact time meanwhile to ensure integrity and availability of message delivery. The simulation results based on real-world mobility traces show the performance advantages of NodeRank in offloading efficiency and network redundant copies.

On Managing Mobility of Mobile Nodes using an Improved Mobile IP Regional Registration in Wireless Mobile Networks (무선 이동 망에서 개선된 Mobile IP 지역 위치등록을 이용한 이동 노드의 이동성 관리)

  • 한승진;이정현
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.47-54
    • /
    • 2004
  • By using wireless terminal, the number of users who wish to use the multimedia service like the Internet as well as Short Message Services and voice service has increased dramatically over the last years. We propose the method that improves Mobile IPv4 (MIPv4) Regional Registration in wireless mobile networks to decrease traffic's transmission delay and message generation compared with an existing method We design the scheme in MIPv4 environments that a packet do not pass through the home agent transmitted from correspondent node to mobile node, if a mobile node moves to other mobility agent. Simulation results show that the proposed method significantly reduces the expenses for registration and delivering packet.

Adaptive OLSR Protocol Based on Average Node Distance in Airdropped Distributed Mobility Model (분산 낙하 이동 모델에서의 평균 노드 거리 기반 적응적 OLSR 프로토콜)

  • Lee, Taekmin;Lee, Jinhae;Wang, Jihyeun;Yoo, Joonhyuk;Yoo, Seong-eun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.2
    • /
    • pp.83-91
    • /
    • 2018
  • With the development of IT (Information Technology) technology, embedded system and network technology are combined and used in various environments such as military environment as well as everyday life. In this paper, we propose a new airdropped distributed mobility model (ADMM) modeling the dispersion falling of the direct shot of a cluster bomb, and we compare and analyze some representative MANET routing protocols in ADMM in ns-3 simulator. As a result of the analysis, we show OLSR routing protocol is promising in ADMM environment in the view points of packet delivery ratio (PDR), end to end delay, and jitter. In addition, we propose a new adaptation scheme for OLSR, AND-OLSR (Average Node Distance based adaptive-OLSR) to improve the original OLSR in ADMM environment. The new protocol calculates the average node distance, adapts the period of the control message based on the average node distance increasing rate. Through the simulation study, we show that the proposed AND-OLSR outperforms the original OLSR in PDR and control message overhead.

An Enhanced Robust Routing Protocol in AODV over MANETs (MANETs의 AODV기반 향상된 견고한 라우팅 프로토콜)

  • Kim, Kwan-Woong;Bae, Sung-Hwan;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.1
    • /
    • pp.14-19
    • /
    • 2009
  • In Mobile Ad-hoc Network, link failure and packet loss may occur frequently due to its nature of mobility and limited battery life. In this paper, an enhanced robust routing protocol based on AODV(Ad hoc On-demand Distance Vector routing) by monitoring variation of receiving signal strength is proposed. New metric function that consists of node mobility and hops of path is used for routing decision. For preventing route failure by node movement during data transmission, a new route maintenance is presented. If the node movement is detected, the routing agent switches local path to its neighbor node. Simulation results show that the performance of the proposed routing scheme is superior to previous AODV protocol.

  • PDF

Neighbor Discovery Protocol Based on Inhibited and Priority Access Controls for Multihop Cellular Networks (멀티홉 셀룰러 네트워크에서 억제 및 우선순위 접속 제어기반의 이웃노드 탐색 프로토콜)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2533-2540
    • /
    • 2013
  • In multihop cellular network environments, the mobility of nodes is a major obstacle to find a reliable routing path between a mobile node (MN) and the access node (AN). Therefore, in this paper, we propose a fast and reliable neighbor discovery protocol that enables the fast and reliable neighbor discovery by considering the node mobility in the multihop cellular network. The proposed neighbor discovery protocol inhibits the transmission of unnecessary control messages to quickly find a suitable neighbor node (NN) and performs a priority-based access control to transmit control messages without collision in the order of NN desirable to be selected. Simulation results show that the proposed neighbor discovery protocol can discover the NNs faster than the conventional scheme and select a more reliable relay node although the number of neighbor nodes increases and the node mobility increases.

An Enhanced Routing Protocol for Support Mobility in Mobile Ad hoc Networks (이동 ad hoc 네트워크의 이동성을 지원하기 위한 향상된 라우팅 프로토콜)

  • Kim, Kwan-Woong;Kim, Dae-Ik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.131-138
    • /
    • 2008
  • Mobile Ad hoc NETworks (MANETs) refer to autonomous networks in which wireless data communications are established between multiple nodes in a given coverage area without a base station or centralized administration. Because of node mobility and limited battery life, the network topology may changes frequently. Selecting the most reliable path during route discovery process is important to improve performance in ad hoc networks. In this paper, an enhanced routing protocol based on AODV(Ad hoc On-demand Distance Vector routing) by monitoring variation of receiving signal strength is proposed. New metric function that consists of node mobility and hops of path is used for routing decision. For preventing route failure by node movement during data transmission, a new route maintenance named as LRC (Local Route Change) is presented. If the node movement is detected, the routing agent switches path to its neighbor node in LRC. Simulation results show that the performance of the proposed routing scheme is superior to previous AODY protocol.

Enhanced Multi-Point Relay Selection Algorithm for Mobility and Distribution of Nodes (노드 이동성 및 분포를 고려한 향상된 다중 점 릴레이 선택 알고리즘)

  • Park, Jongho;Oh, Chang-Yeong;Ahn, Ji Hyoung;Kim, Joung-Sik;Jung, Sunghun;Lee, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.12
    • /
    • pp.1128-1137
    • /
    • 2012
  • In this paper, we propose an improved MPR selection method considering mobility and density of nodes for ad-hoc networks. In Optimized Link State Routing(OLSR), a node selects 1-hop Multi-Point Relay(MPR) nodes to cover all 2-hop neighbor nodes. In a high population area, many nodes are likely to be selected as MPR nodes by their neighbors. This leads to increase in contention among MPR nodes and may decrease overall performance of the network. In addition, when an MPR node leaves the communication range of its MPR selector node, it can no longer perform as the MPR node and the performance of the network may also decrease. In this paper, we propose an MPR selection method which measures the mobility and density of nodes by exchanging the hello messages and gives the priorities to the nodes for MPR selection. Performance evaluation results using OPNET show that the proposed method is superior to OLSR or the MPR candidate method in terms of connectivity and throughput.

Cost Effective Mobility Anchor Point Selection Scheme for HMIPv6 Networks (HMIPv6 환경에서의 최소비용 MAP 선택 기법)

  • Roh, Myoung-Hwa;Jeong, Choong-Kyo
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.207-213
    • /
    • 2006
  • Mobility Anchor points are used for the mobility management in HMIPv6 networks. Currently a mobile node selects the MAP farthest away from itself as a new MAP among available candidates when it undertakes a macro hand off. With this technique, however, the traffic tends to be concentrated at a MAP with the largest domain size and the communication cost increases due to the distance between the mobile node and the MAP. In this work, we propose a novel scheme to select a MAP to minimize the communication cost, taking the mobile node's moving speed and data rate into account. To come up with the scheme we analyses the communication analyses the communication cost into the binding update cost and the data packet delivery cost, and derive an equation representing the optimal MAP domain size to minimize the total cost.

  • PDF

A New Mobility Management Scheme in Proxy Mobile IPv6 Networks with Dynamic Paging Support (Proxy Mobile IPv6 환경에서 동적 페이징 지원을 위한 이동성 관리기법)

  • Yi, Myung-Kyu;Kim, Cheol-Joong;Park, Seok-Cheon;Yang, Young-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.1999-2007
    • /
    • 2010
  • Proxy Mobile IPv6(PMIPv6) is a network-based mobility management protocol and it does not require mobile node's involving in mobility management. In PMIPv6, the Mobile Access Gateway (MAG) incurs a high signaling cost to update the location of a mobile node to the remote Local Mobility Anchor (LMA) if it moves frequently. It may cause excessive signaling traffic and increase a high traffic load on LMA. Therefore, we propose a new mobility management scheme in proxy mobile IPv6 networks with dynamic paging support. To minimize signaling overhead, in our proposal, the size of the paging area is determined dynamically according the changes of mobility and traffic patterns of the mobile node. An analytic model is applied to determine the optimal size of the paging area. The cost analysis using fluid flow model presented in this paper shows that our proposal can achieve performance superior that of PMIPv6 scheme.

Mobility Support Architecture in Locator-ID Separation based Future Internet using Proxy Mobile IPv6

  • Seok, Seung-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.209-217
    • /
    • 2014
  • Of several approaches for future Internet, separating two properties of IP address into locator and identifier, is being considered as a highly likely solution. IETF's LISP (Locator ID Separation Protocol) is proposed for this architecture. In particular, the LISP model easily allows for device mobility through simple update of information at MS (Mapping Server) without a separate protocol. In recent years, some of the models supporting device mobility using such LISP attributes have emerged; however, most of them have the limitation for seamless mobility support due to the frequent MS information updates and the time required for the updates. In this paper, PMIPv6 (Proxy Mobile IPv6) model is applied for mobility support in LISP model. PMIPv6 is a method that can support mobility based on network without the help of device; thus, this we define anew the behavior of functional modules (LMA, MAG and MS) to fit this model to the LISP environment and present specifically procedures of device registration, data transfer, route optimization and handover. In addition, our approach improves the communication performance using three tunnels identified with locators between mobile node and corresponding node and using a route optimized tunnel between MN's MAG and CN's MAG. Finally, it allows for seamless mobility by designing a sophisticated handover procedure.