• Title/Summary/Keyword: Node Localization

Search Result 185, Processing Time 0.02 seconds

A Fine-grained Localization Scheme Using A Mobile Beacon Node for Wireless Sensor Networks

  • Liu, Kezhong;Xiong, Ji
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.147-162
    • /
    • 2010
  • In this paper, we present a fine-grained localization algorithm for wireless sensor networks using a mobile beacon node. The algorithm is based on distance measurement using RSSI. The beacon node is equipped with a GPS sender and RF (radio frequency) transmitter. Each stationary sensor node is equipped with a RF. The beacon node periodically broadcasts its location information, and stationary sensor nodes perceive their positions as beacon points. A sensor node's location is computed by measuring the distance to the beacon point using RSSI. Our proposed localization scheme is evaluated using OPNET 8.1 and compared with Ssu's and Yu's localization schemes. The results show that our localization scheme outperforms the other two schemes in terms of energy efficiency (overhead) and accuracy.

Weighted Centroid Localization Algorithm Based on Mobile Anchor Node for Wireless Sensor Networks

  • Ma, Jun-Ling;Lee, Jung-Hyun;Rim, Kee-Wook;Han, Seung-Jin
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • Localization of nodes is a key technology for application of wireless sensor network. Having a GPS receiver on every sensor node is costly. In the past, several approaches, including range-based and range-free, have been proposed to calculate positions for randomly deployed sensor nodes. Most of them use some special nodes, called anchor nodes, which are assumed to know their own locations. Other sensors compute their locations based on the information provided by these anchor nodes. This paper uses a single mobile anchor node to move in the sensing field and broadcast its current position periodically. We provide a weighted centroid localization algorithm that uses coefficients, which are decided by the influence of mobile anchor node to unknown nodes, to prompt localization accuracy. We also suggest a criterion which is used to select mobile anchor node which involve in computing the position of nodes for improving localization accuracy. Weighted centroid localization algorithm is simple, and no communication is needed while locating. The localization accuracy of weighted centroid localization algorithm is better than maximum likelihood estimation which is used very often. It can be applied to many applications.

  • PDF

A Localization Algorithm for Underwater Wireless Sensor Networks Based on Ranging Correction and Inertial Coordination

  • Guo, Ying;Kang, Xiaoyue;Han, Qinghe;Wang, Jingjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4971-4987
    • /
    • 2019
  • Node localization is the basic task of underwater wireless sensor networks (UWSNs). Most of the existing underwater localization methods rely on ranging accuracy. Due to the special environment conditions in the ocean, beacon nodes are difficult to deploy accurately. The narrow bandwidth and high delay of the underwater acoustic communication channel lead to large errors. In order to reduce the ranging error and improve the positioning accuracy, we propose a localization algorithm based on ranging correction and inertial coordination. The algorithm can be divided into two parts, Range Correction based Localization algorithm (RCL) and Inertial Coordination based Localization algorithm (ICL). RCL uses the geometric relationship between the node positions to correct the ranging error and obtain the exact node position. However, when the unknown node deviates from the deployment area with the movement of the water flow, it cannot communicate with enough beacon nodes in a certain period of time. In this case, the node uses ICL algorithm to combine position data with motion information of neighbor nodes to update its position. The simulation results show that the proposed algorithm greatly improves the positioning accuracy of unknown nodes compared with the existing localization methods.

Incremental Strategy-based Residual Regression Networks for Node Localization in Wireless Sensor Networks

  • Zou, Dongyao;Sun, Guohao;Li, Zhigang;Xi, Guangyong;Wang, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2627-2647
    • /
    • 2022
  • The easy scalability and low cost of range-free localization algorithms have led to their wide attention and application in node localization of wireless sensor networks. However, the existing range-free localization algorithms still have problems, such as large cumulative errors and poor localization performance. To solve these problems, an incremental strategy-based residual regression network is proposed for node localization in wireless sensor networks. The algorithm predicts the coordinates of the nodes to be solved by building a deep learning model and fine-tunes the prediction results by regression based on the intersection of the communication range between the predicted and real coordinates and the loss function, which improves the localization performance of the algorithm. Moreover, a correction scheme is proposed to correct the augmented data in the incremental strategy, which reduces the cumulative error generated during the algorithm localization. The analysis through simulation experiments demonstrates that our proposed algorithm has strong robustness and has obvious advantages in localization performance compared with other algorithms.

The Parameter Identification for Localization Scheme of the Optics-Based Micro Sensor Node (광신호 기반의 마이크로 센서 노드 위치 인식 시스템을 위한 파라미터 식별)

  • Jeon, Ji-Hun;Lee, Min-Su;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • In this paper, the parameter identification for localization scheme for the optics-based micro sensor node is conducted. We analyzed short measurement range problem which can be occurred in optical based micro sensor node localization method using a time of flight. And we set up the theory for distance and maximum reflected laser power to overcome the problem by identifying hardware parameters like laser power, effective area of MEMS CCR, sensitivity of photodetector, and so on. Experimental results of measurement of maximum reflected laser power were compared with results of the theory. By using the theory, we can identify hardware parameters of localization scheme to measure particular position of the optics-based micro sensor node.

Performance Analysis of Scanning Scheme Using ToF for the Localization of Optics-Based Sensor Node (광신호 기반 무선 센서 노드 위치 인식을 위한 ToF 기법의 성능 분석)

  • Jang, Woo Hyeop;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.268-274
    • /
    • 2013
  • In this paper, the performance analysis of optics-based sensor node localization using ToF (Time of Flight) scheme is conducted. Generally, the position of the sensor node is calculated on the base station. And the base station scans neighboring sensor nodes with a laser. The laser which is reflected from one sensor node, however, can be reached to the base station at different angles according to the scanning resolution. This means that the error of the reached angle can increase and one node may be recognized as different nodes. Also the power of laser can decrease because the laser signal spread. Thus the sensor node which is located at a long distance from the base station cannot be detected. In order to overcome these problems which can be occurred in localization using ToF, the beam spot, the scanning resolution, the size of reflector and the power of laser at the sensor node were analyzed. It can be expected that the consequence of analysis can be provided in acquisition of accurate position of sensor node and construction of optics-based sensor node localization system.

Multi-Objective Optimization for a Reliable Localization Scheme in Wireless Sensor Networks

  • Shahzad, Farrukh;Sheltami, Tarek R.;Shakshuki, Elhadi M.
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.796-805
    • /
    • 2016
  • In many wireless sensor network (WSN) applications, the information transmitted by an individual entity or node is of limited use without the knowledge of its location. Research in node localization is mostly geared towards multi-hop range-free localization algorithms to achieve accuracy by minimizing localization errors between the node's actual and estimated position. The existing localization algorithms are focused on improving localization accuracy without considering efficiency in terms of energy costs and algorithm convergence time. In this work, we show that our proposed localization scheme, called DV-maxHop, can achieve good accuracy and efficiency. We formulate the multi-objective optimization functions to minimize localization errors as well as the number of transmission during localization phase. We evaluate the performance of our scheme using extensive simulation on several anisotropic and isotropic topologies. Our scheme can achieve dual objective of accuracy and efficiency for various scenarios. Furthermore, the recently proposed algorithms require random uniform distribution of anchors. We also utilized our proposed scheme to compare and study some practical anchor distribution schemes.

Adaptive Power Control based Efficient Localization Technique in Mobile Wireless Sensor Networks (모바일 무선 센서 네트워크에서 적응적 파워 조절 기반 효율적인 위치인식 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.737-746
    • /
    • 2009
  • Given the increased interest in ubiquitous computing, wireless sensor network has been researched widely. The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose APL(Adaptive Power Control based Resource Allocation Technique for Efficient Localization Technique), the localization technique for multiple mobile nodes based on adaptive power control in mobile wireless sensor networks. In APL, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use RTS(Ready To Send) packet type for localization initiation by mobile node and CTS(Clear To Send) packet type for localization grant by anchor node. NTS(Not To Send) packet type is used to reject localization by anchor node for interference avoidance and STS(Start To Send) for synchronization between 모anchor nodes. At last, the power level of sensor node is controled adaptively to minimize the affected area. The experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and APL provides efficient localization.

The Insights of Localization through Mobile Anchor Nodes in Wireless Sensor Networks with Irregular Radio

  • Han, Guangjie;Xu, Huihui;Jiang, Jinfang;Shu, Lei;Chilamkurti, Naveen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2992-3007
    • /
    • 2012
  • Recently there has been an increasing interest in exploring the radio irregularity research problem in Wireless Sensor Networks (WSNs). Measurements on real test-beds provide insights and fundamental information for a radio irregularity model. In our previous work "LMAT", we solved the path planning problem of the mobile anchor node without taking into account the radio irregularity model. This paper further studies how the localization performance is affected by radio irregularity. There is high probability that unknown nodes cannot receive sufficient location messages under the radio irregularity model. Therefore, we dynamically adjust the anchor node's radio range to guarantee that all the unknown nodes can receive sufficient localization information. In order to improve localization accuracy, we propose a new 2-hop localization scheme. Furthermore, we point out the relationship between degree of irregularity (DOI) and communication distance, and the impact of radio irregularity on message receiving probability. Finally, simulations show that, compared with 1-hop localization scheme, the 2-hop localization scheme with the radio irregularity model reduces the average localization error by about 20.51%.

Distributed Sensor Node Localization Using a Binary Particle Swarm Optimization Algorithm (Binary Particle Swarm Optimization 알고리즘 기반 분산 센서 노드 측위)

  • Fatihah, Ifa;Shin, Soo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.9-17
    • /
    • 2014
  • This paper proposes a binary particle swarm optimization (BPSO) algorithm for distributed node localization in wireless sensor networks (WSNs). Each unknown node performs localization using the value of the measured distances from three or more neighboring anchors, i.e., nodes that know their location information. The node that is localized during the localization process is then used as another anchor for remaining nodes. The performances of particle swarm optimization (PSO) and BPSO in terms of localization error and computation time are compared by using simulations in Matlab. The simulation results indicate that PSO-based localization is more accurate. In contrast, BPSO algorithm performs faster for finding the location of unknown nodes for distributed localization. In addition, the effects of transmission range and number of anchor nodes on the localization error and computation time are investigated.