• Title/Summary/Keyword: Node Lifetime

Search Result 373, Processing Time 0.026 seconds

Lifetime Escalation and Clone Detection in Wireless Sensor Networks using Snowball Endurance Algorithm(SBEA)

  • Sathya, V.;Kannan, Dr. S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1224-1248
    • /
    • 2022
  • In various sensor network applications, such as climate observation organizations, sensor nodes need to collect information from time to time and pass it on to the recipient of information through multiple bounces. According to field tests, this information corresponds to most of the energy use of the sensor hub. Decreasing the measurement of information transmission in sensor networks becomes an important issue.Compression sensing (CS) can reduce the amount of information delivered to the network and reduce traffic load. However, the total number of classification of information delivered using pure CS is still enormous. The hybrid technique for utilizing CS was proposed to diminish the quantity of transmissions in sensor networks.Further the energy productivity is a test task for the sensor nodes. However, in previous studies, a clustering approach using hybrid CS for a sensor network and an explanatory model was used to investigate the relationship between beam size and number of transmissions of hybrid CS technology. It uses efficient data integration techniques for large networks, but leads to clone attacks or attacks. Here, a new algorithm called SBEA (Snowball Endurance Algorithm) was proposed and tested with a bow. Thus, you can extend the battery life of your WSN by running effective copy detection. Often, multiple nodes, called observers, are selected to verify the reliability of the nodes within the network. Personal data from the source centre (e.g. personality and geographical data) is provided to the observer at the optional witness stage. The trust and reputation system is used to find the reliability of data aggregation across the cluster head and cluster nodes. It is also possible to obtain a mechanism to perform sleep and standby procedures to improve the life of the sensor node. The sniffers have been implemented to monitor the energy of the sensor nodes periodically in the sink. The proposed algorithm SBEA (Snowball Endurance Algorithm) is a combination of ERCD protocol and a combined mobility and routing algorithm that can identify the cluster head and adjacent cluster head nodes.This algorithm is used to yield the network life time and the performance of the sensor nodes can be increased.

Analysis of Signaling Load of Mobile IPv6 and Hierarchical Mobile IPv6 (Mobile IPv6와 Hierarchical Mobile IPv6의 시그널링 부하 분석)

  • Kong Ki-Sik;Song MoonBae;Hwang Chong-Sun
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.4
    • /
    • pp.515-524
    • /
    • 2005
  • As the number of the mobile nodes (MNs) increases in the networks, the signaling traffic generated by mobility management for MNs will increase explosively, and such a phenomenon will probably affect overall network performance. In this paper, we propose a novel analytical approach using a continuous-time Markov chain model and hierarchical network model for the analysis on the signaling load of representative IPv6 mobility support Protocols such as Mobile IPv6 (MIPv6) and Hierarchical Mobile IPv6 (HMIPv6). According to these analytical modeling, this paper derives the various signaling costs, which are generated by an MN during its average domain residence time when MIPv6 and HMIPv6 are deployed under the same network architecture, respectively. In addition, based on these derived costs, we investigate the effects of various mobility/traffic-related parameters on the signaling costs generated by an MN under MIPv6 and HMIPv6. The analytical results show that as the average moving speed of an MN gets higher and the binding lifetime is set . to the larger value, and as its average packet arrival rate gets lower, the total signaling cost generated during its average domain residence time under HMIPv6 will get relatively lower than that under MIPv6, and that under the reverse conditions, the total signaling cost under MIPv6 will get relatively lower than that under HMIPv6.

A NAND Flash File System for Sensor Nodes to support Data-centric Applications (데이터 중심 응용을 지원하기 위한 센서노드용 NAND 플래쉬 파일 시스템)

  • Sohn, Ki-Rack;Han, Kyung-Hun;Choi, Won-Chul;Han, Hyung-Jin;Han, Ji-Yeon;Lee, Ki-Hyeok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.47-57
    • /
    • 2008
  • Recently, energy-efficient NAND Flash memory of large volume is favored as next-generation storage for sensor nodes. So far, most sensor node file systems are based on NOR flash and few file systems are applicable to large NAND flash memory. Although it is required to develop new file systems taking account of the features of NAND flash memory, it is difficult to develop them mainly due to the limit of SRAM memory on sensor nodes. Sensor nodes support SRAM of $4{\sim}10$ KBytes only. In this paper, we designed and implemented a novel file system to support data-centric applications. To do this, we added EEPROM of 1 KBytes to store persistent file description data efficiently and devised a simple wear-leveling method. This reduces the number of page updates, resulting in reduction in energy use and increase in lifetime of sensor nodes.

A Routing Scheme Considering Bottleneck and Route Link Quality in RPL-based IoT Wireless Networks (RPL 기반 IoT 무선 네트워크에서 노드 병목 및 전송 경로 품질을 고려한 라우팅 기법)

  • Jung, Ik-Joo;Chung, Sang-Hwa;Lee, Sung-Jun
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1268-1279
    • /
    • 2015
  • In order to manage a large number of devices connected to the Internet of Things (IoT), the Internet Engineering Task Force (IETF) proposed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). The route of the RPL network is generated through the use of an Objective Function (OF) that is suitable for the service that is required for the IoT network. Since the route of the RPL network is conventionally simply chosen only by considering the link quality between the nodes, it is sensible to seek an OF that can also provide better Quality of Service (QoS). In previous studies, the end-to-end delay might possibly be sub-optimal because they only deal with problems related to the reduction of energy consumption and not to the link quality on the path to the sink node. In this study, we propose a scheme that reduces the end-to-end delay but also gives full consideration to both the quality on the entire route to the destination and to the expected lifetime of nodes with bottlenecks from heaped traffic. Weighting factors for the proposed scheme are chosen by experiments and the proposed scheme can reduce the end-to-end delay and the energy consumption of previous studies by 20.8% and 10.5%, respectively.

Energy-Efficient Routing Protocol based on Interference Awareness for Transmission of Delay-Sensitive Data in Multi-Hop RF Energy Harvesting Networks (다중 홉 RF 에너지 하베스팅 네트워크에서 지연에 민감한 데이터 전송을 위한 간섭 인지 기반 에너지 효율적인 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.611-625
    • /
    • 2018
  • With innovative advances in wireless communication technology, many researches for extending network lifetime in maximum by using energy harvesting have been actively performed on the area of network resource optimization, QoS-guaranteed transmission, energy-intelligent routing and etc. As known well, it is very hard to guarantee end-to-end network delay due to uncertainty of the amount of harvested energy in multi-hop RF(radio frequency) energy harvesting wireless networks. To minimize end-to-end delay in multi-hop RF energy harvesting networks, this paper proposes an energy efficient routing metric based on interference aware and protocol which takes account of various delays caused by co-channel interference, energy harvesting time and queuing in a relay node. The proposed method maximizes end-to-end throughput by performing avoidance of packet congestion causing load unbalance, reduction of waiting time due to exhaustion of energy and restraint of delay time from co-channel interference. Finally simulation results using ns-3 simulator show that the proposed method outperforms existing methods in respect of throughput, end-to-end delay and energy consumption.

Residual Battery Capacity and Signal Strength Based Power-aware Routing Protocol in MANET (MANET에서 배터리 잔량과 신호세기를 동시에 고려한 Power-aware 라우팅 프로토콜)

  • Park Gun-Woo;Choi Jong-Oh;Kim Hyoung-Jin;Song Joo-Seok
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.219-226
    • /
    • 2006
  • The shortest path is only maintained during short time because network topology changes very frequently and each mobile nodes communicate each other by depending on battery in MANET(Mobile Ad-hoc Network). So many researches that are to overcome a limitation or consider a power have executed actively by many researcher. But these protocols are considered only one side of link stability or power consumption so we can make high of stability but power consumption isn't efficient. And also we can reduce power consumption of network but the protocol can't make power consumption of balancing. For that reason we suggest RBSSPR(Residual Battery Capacity and Signal Strength Based Power-aware Routing Protocol in MANET). The RBSSPR considers residual capacity of battery and signal strength so it keeps not only a load balancing but also minimizing of power consumption. The RBSSPR is based on AODV(Ad-hoc On-demand Distance Vector Routing). We use ns-2 for simulation. This simulation result shows that RBSSPR can extense lifetime of network through distribution of traffic that is centralized into special node and reducing of power consumption.

Energy-Efficient Data-Aware Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 데이터 인지 라우팅 프로토콜)

  • Lee, Sung-Hyup;Kum, Dong-Won;Lee, Kang-Won;Cho, You-Ze
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.122-130
    • /
    • 2008
  • In many applications of wireless sensor networks, sensed data can be classified either normal or urgent data according to its time criticalness. Normal data such as periodic monitoring is loss and delay tolerant, but urgent data such as fire alarm is time critical and should be transferred to a sink with reliable. In this paper, by exploiting these data characteristics, we propose a novel energy-efficient data-aware routing protocol for wireless sensor networks, which provides a high reliability for urgent data and energy efficiency for normal data. In the proposed scheme, in order to enhance network survivability and reliability for urgent data, each sensor node forwards only urgent data when its residual battery level is below than a threshold. Also, the proposed scheme uses different data delivery mechanisms depending on the data type. The normal data is delivered to the sink using a single-path-based data forwarding mechanism to improve the energy-efficiency. Meanwhile, the urgent data is transmitted to the sink using a directional flooding mechanism to guarantee high reliability. Simulation results demonstrate that the proposed scheme could significantly improve the network lifetime, along with high reliability for urgent data delivery.

Performance Analysis of RS codes for Low Power Wireless Sensor Networks (저전력 무선 센서 네트워크를 위한 RS 코드의 성능 분석)

  • Jung, Kyung-Kwon;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.83-90
    • /
    • 2010
  • In wireless sensor networks, the data transmitted from the sensor nodes are susceptible to corruption by errors which caused of noisy channels and other factors. In view of the severe energy constraint in Sensor Networks, it is important to use the error control scheme of the energy efficiently. In this paper, we presented RS (Reed-Solomon) codes in terms of their BER performance and power consumption. RS codes work by adding extra redundancy to the data. The encoded data can be stored or transmitted. It could have errors introduced, when the encoded data is recovered. The added redundancy allows a decoder to detect which parts of the received data is corrupted, and corrects them. The number of errors which are able to be corrected by RS code can determine by added redundancy. The results of experiment validate the performance of proposed method to provide high degree of reliability in low-power communication. We could predict the lifetime of RS codes which transmitted at 32 byte a 1 minutes. RS(15, 13), RS(31, 27), RS(63, 57), RS(127,115), and RS(255,239) can keep the days of 173.7, 169.1, 163.9, 150.7, and 149.7 respectively. The evaluation based on packet reception ratio (PRR) indicates that the RS(255,239) extends a sensor node's communication range by up about 3 miters.

A Clustering Technique to Minimize Energy Consumption of Sensor networks by using Enhanced Genetic Algorithm (진보된 유전자 알고리즘 이용하여 센서 네트워크의 에너지 소모를 최소화하는 클러스터링 기법)

  • Seo, Hyun-Sik;Oh, Se-Jin;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.27-37
    • /
    • 2009
  • Sensor nodes forming a sensor network have limited energy capacity such as small batteries and when these nodes are placed in a specific field, it is important to research minimizing sensor nodes' energy consumption because of difficulty in supplying additional energy for the sensor nodes. Clustering has been in the limelight as one of efficient techniques to reduce sensor nodes' energy consumption in sensor networks. However, energy saving results can vary greatly depending on election of cluster heads, the number and size of clusters and the distance among the sensor nodes. /This research has an aim to find the optimal set of clusters which can reduce sensor nodes' energy consumption. We use a Genetic Algorithm(GA), a stochastic search technique used in computing, to find optimal solutions. GA performs searching through evolution processes to find optimal clusters in terms of energy efficiency. Our results show that GA is more efficient than LEACH which is a clustering algorithm without evolution processes. The two-dimensional GA (2D-GA) proposed in this research can perform more efficient gene evolution than one-dimensional GA(1D-GA)by giving unique location information to each node existing in chromosomes. As a result, the 2D-GA can find rapidly and effectively optimal clusters to maximize lifetime of the sensor networks.

A Real-Time Data Transfer Mechanism Considering Link Error Rates in Wireless Sensor Networks (무선 센서 네트워크에서 링크 에러율을 고려한 실시간 데이터 전달 기법)

  • Choi, Jae-Won;Lee, Kwang-Hui
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.146-154
    • /
    • 2007
  • In this paper, we have presented a real-time transfer mechanism for the delay-sensitive data in WSNs (Wireless Sensor Networks). The existing methods for real-time data transfer select a path whose latency is shortest or the number of hops is least. Although the approaches of these methods are acceptable, they do not always work as efficiently as they can because they had no consideration for the link error rates. In the case of transmission failures on links, they can not guarantee the end-to-end real-time transfer due to retransmissions. Therefore, we have proposed an algorithm to select a real-time transfer path in consideration of the link error rates. Our mechanism estimates the 1-hop delay based on the link error rate between two neighboring nodes, which in turn enables the calculation of the expected end-to-end delay. A source node comes to choose a path with the shortest end-to-end delay as a real-time route, and sends data along the path chosen. We performed various experiments changing the link error rates and discovered that this proposed mechanism improves the speed of event-to-sink data transfer and reduces delay jitter. We also found that this mechanism prevents additional energy consumption and prolongs network lifetime, resulting from the elative reduction of transmission failures and retransmissions.