• Title/Summary/Keyword: Node Energy

Search Result 1,276, Processing Time 0.026 seconds

Continuous Moving Object Tracking Using Query Relaying in Tree-Based Sensor Network (트리 기반의 센서 네트워크에서 질의 중계를 통한 이동 객체의 연속적인 위치 획득 방안)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Yim, Yongbin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.271-280
    • /
    • 2014
  • In wireless sensor networks, there have been two methods for sensing continuously moving object tracking: user-query based method and periodic report based method. Although the former method requires overhead for user query rather than the latter method, the former one is known as an energy-efficient method without transferring unnecessary information. In the former method, a virtual tree, consisting of sensor nodes, is exploited for the user querying and sensor reporting. The tree stores the information about mobile objects; the stored information is triggered to report by the user query. However, in case of fast moving object, the tracking accuracy reduces due to the time delay of end-to-end repeated query. To solve the problem, we propose a query relaying method reducing the time delay for mobile object tracking. In the proposed method, the nodes in the tree relay the query to the adjacent node according to the movement of mobile object tracking. Relaying the query message reduces the end-to-end querying time delay. Simulation results show that our method is superior to the existing ones in terms of tracking accuracy.

A Real-Time Data Transfer Mechanism Considering Link Error Rates in Wireless Sensor Networks (무선 센서 네트워크에서 링크 에러율을 고려한 실시간 데이터 전달 기법)

  • Choi, Jae-Won;Lee, Kwang-Hui
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.146-154
    • /
    • 2007
  • In this paper, we have presented a real-time transfer mechanism for the delay-sensitive data in WSNs (Wireless Sensor Networks). The existing methods for real-time data transfer select a path whose latency is shortest or the number of hops is least. Although the approaches of these methods are acceptable, they do not always work as efficiently as they can because they had no consideration for the link error rates. In the case of transmission failures on links, they can not guarantee the end-to-end real-time transfer due to retransmissions. Therefore, we have proposed an algorithm to select a real-time transfer path in consideration of the link error rates. Our mechanism estimates the 1-hop delay based on the link error rate between two neighboring nodes, which in turn enables the calculation of the expected end-to-end delay. A source node comes to choose a path with the shortest end-to-end delay as a real-time route, and sends data along the path chosen. We performed various experiments changing the link error rates and discovered that this proposed mechanism improves the speed of event-to-sink data transfer and reduces delay jitter. We also found that this mechanism prevents additional energy consumption and prolongs network lifetime, resulting from the elative reduction of transmission failures and retransmissions.

Time Synchronization Algorithm using the Clock Drift Rate and Reference Signals Between Two Sensor Nodes (클럭 표류율과 기준 신호를 이용한 두 센서 노드간 시간 동기 알고리즘)

  • Kim, Hyoun-Soo;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Time synchronization algorithm in wireless sensor networks is essential to various applications such as object tracking, data encryption, duplicate detection, and precise TDMA scheduling. This paper describes CDRS that is a time synchronization algorithm using the Clock Drift rate and Reference Signals between two sensor nodes. CDRS is composed of two steps. At first step, the time correction is calculated using offset and the clock drift rate between the two nodes based on the LTS method. Two nodes become a synchronized state and the time variance can be compensated by the clock drift rate. At second step, the synchronization node transmits reference signals periodically. This reference signals are used to calculate the time difference between nodes. When this value exceeds the maximum error tolerance, the first step is performed again for resynchronization. The simulation results on the performance analysis show that the time accuracy of the proposed algorithm is improved, and the energy consumption is reduced 2.5 times compared to the time synchronization algorithm with only LTS, because CDRS reduces the number of message about 50% compared to LTS and reference signals do not use the data space for timestamp.

Propagation characteristics of blast-induced vibration to fractured zone (파쇄영역에 따른 발파진동 전파특성)

  • Ahn, Jae-Kwang;Park, Duhee;Park, Ki-Chun;Yoon, Ji Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.959-972
    • /
    • 2017
  • In evaluation of blast-induced vibration, peak particle velocity (PPV) is generally calculated by using attenuation relation curve. Calculated velocity is compared with the value in legal requirements or the standards to determine the stability. Attenuation relation curve varies depending on frequency of test blasting, geological structure of the site and blasting condition, so it is difficult to predict accurately using such an equation. Since PPV is response value from the ground, direct evaluation of the structure is impractical. Because of such a limit, engineers tend to use the commercial numerical analysis program in evaluating the stability of the structure more accurately. However, when simulate the explosion process using existing numerical analysis program, it's never easy to accurately simulate the complex conditions (fracture, crushing, cracks and plastic deformation) around blasting hole. For simulating such a process, the range for modelling will be limited due to the maximum node count and it requires extended calculation time as well. Thus, this study is intended to simulate the elastic energy after fractured zone only, instead of simulating the complex conditions of the rock that results from the blast, and the analysis of response characteristics of the velocity depending on shape and size of the fractured zone was conducted. As a result, difference in velocity and attenuation character were calculated depending on fractured zone around the blast source appeared. Propagation of vibration tended to spread spherically as it is distanced farther from the blast source.

Environmental monitoring system research based on low-power sensor network (저전력 센서네트워크 기반 환경모니터링 시스템 연구)

  • Kim, Ki-Tae;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.807-810
    • /
    • 2011
  • The sensor network technology for core technology of ubiquitous computing is in the spotlight recently, the research on sensor network is proceeding actively which is composed many different sensor node. USN(Ubiquitous Sensor Network) is the network that widely applies for life of human being. It works out to sense, storage, process, deliver every kind of appliances and environmental information from the stucktags and sensors. And it is possible to utilize to measure and monitor about the place of environmental pollution which is difficult for human to install. It's studied constantly since it be able to compose easily more subminiature, low-power, low-cost than previous one. And also it spotlights an important field of study, graft the green IT and IT of which the environment and IT unite stragically onto the Network. The problem for the air pollution in the office or the indoor except a specific working area is the continuously issue since the human beings have lived in the dwelling facilities. Measures for that problem are urgently needed. It's possible to solve for the freshair of outside with enough ventilation but that is the awkward situation to be managed by person. This study is the system engineering to management for indoor air condition under the sensor network. And research for efficiently manage an option.

  • PDF

Localization Scheme with Mobile Beacons in Ocean Sensor Networks (모바일 비콘을 이용한 해양 센서 네트워크의 위치 파악 기법)

  • Lee, Sang-Ho;Kim, Eun-Chan;Kim, Chung-San;Kim, Ki-Seon;Choi, Yeong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1128-1134
    • /
    • 2007
  • Recently, sensor network technology is a highly concerned area due to the expectation of many applications in various fields. The application of sensor network technology to the marine and ocean surveillance and investigation makes the marine environmental research easier since intelligent sensor nodes substitute the human labor work. In ocean sensor network, the localization scheme for the sensor nodes is most essential because all the information without from sensor nodes might be useless unless the positional information of each sensor nodes is provided. In this paper, the localization scheme with mobile beacons in ocean sensor networks is suggested and showed it could be effective for applying to marine circumstances. Even though the previous localization scheme(Ssu's) has advantages that additional hardware is not required for obtaining the information of distance and angle and shows the high accuracy of location and energy efficiency and easy expandability as well, it has also demerits the location error increases as the minimum distance between the absolute positional information become closer. In our works, the improved localization scheme with the presumed area of sensor node using geometric constraints is suggested.

  • PDF

A Data Aggregation Scheme for Enhancing the Efficiency of Data Aggregation and Correctness in Wireless Sensor Networks (무선 센서 네트워크에서 데이터 수집의 효율성 및 정확성 향상을 위한 데이터 병합기법)

  • Kim, Hyun-Tae;Yu, Tae-Young;Jung, Kyu-Su;Jeon, Yeong-Bae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.531-536
    • /
    • 2006
  • Recently, many of researchers have been studied in data processing oriented middleware for wireless sensor networks with the rapid advances on sensor and wireless communication technologies. In a wireless sensor network, a middleware should handle the data loss problem at an intermediate sensor node caused by instantaneous data burstness to support efficient processing and fast delivering of the sensing data. To handle this problem, a simple data discarding or data compressing policy for reducing the total amount of data to be transferred is typically used. But, data discarding policy decreases the correctness of a collected data, in other hand, data compressing policy requires additional processing overhead with the high complexity of the given algorithm. In this paper, it proposes a data-average method for enhancing the efficiency of data aggregation and correctness where the sensed data should be delivered only with the limited computing power and energy resource. With the proposed method, unnecessary data transfer of the overlapped data is eliminated and data correctness is enhanced by using the proposed averaging scheme when an instantaneous data burstness is occurred. Finally, with the TOSSTM simulation results on TinyBB, we show that the correctness of the transferred data is enhanced.

The research of the Sensor network service platform technology based on OGC (OGC 기반의 센서 네트워크 서비스 플랫폼 기술 연구)

  • Yeom, Sung-Kun;Yoo, Sang-Keun;Kim, Yong-Woon;Kim, Hyoung Jun;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1022-1025
    • /
    • 2009
  • USN(Ubiquitous Sensor Network) is a core infrastructure that makes come true the u-life in the ubiquitous society through various services of area such as u-city and u-Health. Therefore, we need to reseach about the domestic standards to establish the core technique of USN. Currently, the status of USN standards is most of technical standard and reseach that are technology for sensor node implementation and a protocol for energy-efficient communication and interlock with existing network. But, Standard and reseach for sensor network, integration management of heterogeneous sensor networks for USN application, sensing data management and USN database structure definition such as application and middleware are weak level. In this paper, we researched for standard development of the domestic sensor network service and relevant standard analysis to configure SWE(Sensor Web Enablement) of OGC(Open Geospatial Consortium) for standarded plattform technoloy in part of the middleware. Also we researched that it's a connection between domestic TTA (Telecommunications Technology Association) standards and SWE Standard. Finally, we researched for standard service plattform architecture on sensor network through analysis on the possibility of applying OGC-based services platform.

  • PDF

A New Incentive Based Bandwidth Allocation Scheme For Cooperative Non-Orthogonal Multiple Access (협력 비직교 다중 접속 네트워크에서 새로운 인센티브 기반 주파수 할당 기법)

  • Kim, Jong Won;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.6
    • /
    • pp.173-180
    • /
    • 2021
  • Non Orthogonal Multiple Access (NOMA) is a technology to guarantee the explosively increased Quality of Service(QoS) of users in 5G networks. NOMA can remove the frequent orthogonality in Orthogonal Multiple Access (OMA) while allocating the power differentially to classify user signals. NOMA can guarantee higher communication speed than OMA. However, the NOMA has one disadvantage; it consumes a more energy power when the distance increases. To solve this problem, relay nodes are employed to implement the cooperative NOMA control idea. In a cooperative NOMA network, relay node participations for cooperative communications are essential. In this paper, a new bandwidth allocation scheme is proposed for cooperative NOMA platform. By employing the idea of Vickrey-Clarke-Groves (VCG) mechanism, the proposed scheme can effectively prevent selfishly actions of relay nodes in the cooperative NOMA network. Especially, base stations can pay incentives to relay nodes as much as the contributes of relay nodes. Therefore, the proposed scheme can control the selfish behavior of relay nodes to improve the overall system performance.

Design of Single Power CMOS Beta Ray Sensor Reducing Capacitive Coupling Noise (커패시터 커플링 노이즈를 줄인 단일 전원 CMOS 베타선 센서 회로 설계)

  • Jin, HongZhou;Cha, JinSol;Hwang, ChangYoon;Lee, DongHyeon;Salman, R.M.;Park, Kyunghwan;Kim, Jongbum;Ha, PanBong;Kim, YoungHee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.338-347
    • /
    • 2021
  • In this paper, the beta-ray sensor circuit used in the true random number generator was designed using DB HiTek's 0.18㎛ CMOS process. The CSA circuit proposed a circuit having a function of selecting a PMOS feedback resistor and an NMOS feedback resistor, and a function of selecting a feedback capacitor of 50fF and 100fF. And for the pulse shaper circuit, a CR-RC2 pulse shaper circuit using a non-inverting amplifier was used. Since the OPAMP circuit used in this paper uses single power instead of dual power, we proposed a circuit in which the resistor of the CR circuit and one node of the capacitor of the RC circuit are connected to VCOM instead of GND. And since the output signal of the pulse shaper does not increase monotonically, even if the output signal of the comparator circuit generates multiple consecutive pulses, the monostable multivibrator circuit is used to prevent signal distortion. In addition, the CSA input terminal, VIN, and the beta-ray sensor output terminal are placed on the top and bottom of the silicon chip to reduce capacitive coupling noise between PCB traces.