• Title/Summary/Keyword: Nodal Plane

Search Result 71, Processing Time 0.024 seconds

PIV measurements of near wake behind a sinusoidal cylinder

  • Zhang W.;Daichin Daichin;Lee S. J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.59-62
    • /
    • 2003
  • The near wake behind a sinusoidal cylinder at Re=5200 has been investigated using DPIV system. The velocity fields, streamlines and vorticity contours of the mean flow were compared at the nodal, saddle and middle planes with those of a right circular cylinder. For the sinusoidal cylinder, the vortex core moves downstream and the vortex formation region is expanded in streamwise direction while suppressed in transverse direction at the nodal plane. At the saddle and the middle plane the vortex spread in both streamwise and transverse directions, forming the maximum vortex region at the saddle plane.

  • PDF

A simple method of stiffness matrix formulation based on single element test

  • Mau, S.T.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.203-216
    • /
    • 1999
  • A previously proposed finite element formulation method is refined and modified to generate a new type of elements. The method is based on selecting a set of general solution modes for element formulation. The constant strain modes and higher order modes are selected and the formulation method is designed to ensure that the element will pass the basic single element test, which in turn ensures the passage of the basic patch test. If the element is to pass the higher order patch test also, the element stiffness matrix is in general asymmetric. The element stiffness matrix depends only on a nodal displacement matrix and a nodal force matrix. A symmetric stiffness matrix can be obtained by either modifying the nodal displacement matrix or the nodal force matrix. It is shown that both modifications lead to the same new element, which is demonstrated through numerical examples to be more robust than an assumed stress hybrid element in plane stress application. The method of formulation can also be used to arrive at the conforming displacement and hybrid stress formulations. The convergence of the latter two is explained from the point of view of the proposed method.

In-plane Natural Vibration Analysis of a Rotating Annular Disk (회전하는 환상 디스크의 면내 고유진동 해석)

  • Song, Seung-Gwan;Kwak, Dong-Hee;Kim, Chang-Boo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.208-216
    • /
    • 2009
  • In this paper, we present the equations of motion by which the natural vibration of a rotating annular disk can be analyzed accurately. These equations are derived from the theory of finite deformation and the principle of virtual work. The radial displacements of annular disk at the steady state where the disk is rotating at a constant angular velocity are determined by non-linear static equations formulated with 1-dimensional finite elements in radial direction. The linearlized equations of the in-plane vibrations at the disturbed state are also formulated with 1-dimensional finite elements in radial direction along the number of nodal diameters. They are expressed as in functions of the radial displacements at the steady state and the disturbed displacements about the steady state. In-plane static deformation modes of an annular disk are used as the displacement functions for the interpolation functions of the 1-dimensional finite elements. The natural vibrations of an annular disk with different boundary conditions are analyzed by using the presented model and the 3-dimensional finite element model to verify accuracy of the presented equations of motion. Its results are compared and discussed.

Stochastic Finite Element Analysis Modeling of Plane Structure (평면요소의 확률론적 유한요소해석 모델의 개발)

  • 윤성수;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.91-99
    • /
    • 1993
  • The loads and resistances are random in nature. It Is thus necessary to consider these variabilities for more reasonable and reliable structural analysis. The purpose of the present study is to develop a stochastic finite element program which can analyze plane structures. The model requires only the means, standard deviations and distribution types of the load and resistance varualbes. This model can determine from the analysis the means and standard deviations of nodal displacement for all nodal points. The implemention results show good agreement at 10% significant level with the simulation results, if material properties and load conditions fallow the normal distribution.

  • PDF

A Study on the Stifness of Coil Spring in the Three Dimensional Space (3차원 공간에서 코일스프링의 강성에 관한 연구)

  • 이수종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1130-1139
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculated the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants can be predicted by input of few factors.

  • PDF

A Study on the non -linearity of wave washer spring (웨이브 와셔 스프링의 비선형성에 관한 연구)

  • 이수종;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.246-255
    • /
    • 1997
  • The wave washer springs are expected to behave non-linearly between forces and displace¬ments due to contractions of the height and due to expansions in radial direction. To find out the non -linearity of wave washer springs, the three dimensional plate analysis theory using the finite element method is adopted in this paper. The wave washer springs are considered to be three dimensional plate structures rather than frame structures, because their thickness is normally much smaller than their width. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to X - Y Z coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculate the another nodal displacements, that is, the step by step method is used in this paper. The relations between the increments of forces and displacements in each step are recorded and plotted in chart. The experimental results are compared with the calculated chart and it is shown that there are good coincidences between measured values and calculated ones.

  • PDF

A Study on the Stiffness of Frustum-shaped Coil Spring (원추형 코일스프링의 강성에 대한 연구)

  • 김진훈;이수종;이경호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.21-27
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression, principle of virtual work is adapted The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants and stresses can be predicted by input of few factors.

  • PDF

Numerical Evaluation on Bending Stiffness of Nodal Connection Systems in the Single Layered Grid Considering Bolt Clearance (볼트 유격을 고려한 단층 그리드 노드 접합 시스템의 휨 강성에 대한 구조 해석적 평가)

  • Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.141-147
    • /
    • 2020
  • Single-layered grid space steel roof structure is an architectural system in which the structural ability of the nodal connection system greatly influences the stability of the entire structure. Many bolt connection systems have been suggested to enhance for better construct ability, but the structural behavior and maximum resistance of the connection system according to the size of bolt clearance play were difficult to identify. In particular, the identification of bending stiffness of the connection system is very important due to the characteristics of shell structures in which membrane stresses based on bending force effect significantly. To identify effective structural behavior and maximum bearing force, four representative nodal connection systems were selected and nonlinear numerical analysis were performed. The numerical analysis considering the size of the bolt clearance were performed to investigate structural behavior and maximum values of the bending force. In addition, the type of effective nodal connection system were evaluated. As a result, the connection system, which has two shear plane, represented high bending stiffness.

Strategy for refinement of nodal densities and integration cells in EFG technique

  • Patel, Bhavana S.S.;Narayan, Babu K.S.;Venkataramana, Katta
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.901-920
    • /
    • 2016
  • MeshFree methods have become popular owing to the ease with which high stress gradients can be identified and node density distribution can be reformulated to accomplish faster convergence. This paper presents a strategy for nodal density refinement with strain energy as basis in Element-Free Galerkin MeshFree technique. Two popular flat plate problems are considered for the demonstration of the proposed strategies. Issue of integration errors introduced during nodal density refinement have been addressed by suggesting integration cell refinement. High stress effects around two symmetrical semi-circular notches under in-plane axial load have been addressed in the first problem. The second considers crack propagation under mode I and mode II fracture loading by the way of introducing high stress intensity through line crack. The computational efficacy of the adaptive refinement strategies proposed has been highlighted.

Flow visualization and analysis of wake behind a sinusoidal cylinder

  • Nguyen A.T.;Lee S. J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.31-34
    • /
    • 2003
  • The near wake behind a sinusoidal cylinder has been investigated quantitatively using hot-wire anemometer and qualitative. The mean velocity and turbulence intensity were measured in streamwise and spanwise direction. The results show that the wake in the saddle plane has a longer vortex formation region and rapid reversed flow than that in nodal plane. The elongated vortex formation region of sinusoidal cylinder is related with drag reduction. In addition, the flow visualized with particle tracing method support the flow characteristics of sinusoidal cylinder measured by hot-wire.

  • PDF