• Title/Summary/Keyword: Noble metal alloy electrodes

Search Result 1, Processing Time 0.024 seconds

Review on the Determination of Frumkin, Langmuir, and Temkin Adsorption Isotherms at Electrode/Solution Interfaces Using the Phase-Shift Method and Correlation Constants

  • Chun, Jinyoung;Chun, Jang H.
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.734-745
    • /
    • 2016
  • This review article described the electrochemical Frumkin, Langmuir, and Temkin adsorption isotherms of over-potentially deposited hydrogen (OPD H) and deuterium (OPD D) for the cathodic $H_2$ and $D_2$ evolution reactions (HER, DER) at Pt, Ir, Pt-Ir alloy, Pd, Au, and Re/normal ($H_2O$) and heavy water ($D_2O$) solution interfaces. The Frumkin, Langmuir, and Temkin adsorption isotherms of intermediates (OPD H, OPD D, etc.) for sequential reactions (HER, DER, etc.) at electrode/solution interfaces are determined using the phase-shift method and correlation constants, which have been suggested and developed by Chun et al. The basic procedure of the phase-shift method, the Frumkin, Langmuir, and Temkin adsorption isotherms of OPD H and OPD D and related electrode kinetic and thermodynamic parameters, i.e., the fractional surface coverage ($0{\leq}{\theta}{\leq}1$) vs. potential (E) behavior (${\theta}$ vs. E), equilibrium constant (K), interaction parameter (g), standard Gibbs energy (${\Delta}G_{\theta}{^{\circ}}$) of adsorption, and rate (r) of change of ${\Delta}G_{\theta}{^{\circ}}$ with ${\theta}$ ($0{\leq}{\theta}{\leq}1$), at the interfaces are briefly interpreted and summarized. The phase-shift method and correlation constants are useful and effective techniques to determine the Frumkin, Langmuir, and Temkin adsorption isotherms and related electrode kinetic and thermodynamic parameters (${\theta}$ vs. E, K, g, ${\Delta}G_{\theta}{^{\circ}}$, r) at electrode/solution interfaces.