• Title/Summary/Keyword: No Load Test

Search Result 691, Processing Time 0.027 seconds

A Study on Reinforcement Effectiveness for Railway Soft Roadbed by Using Geotextiles (토목섬유를 활용한 철도 연약노반에서의 보강효과)

  • Lee, Jin-Wook;Choi, Chan-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1546-1553
    • /
    • 2005
  • In this study, geotextiles was applied on the selected track-bed, which is relatively economical and efficient way to prevent the problem of mud-pumping and settlement. Field testing sections from Mock-haeng to Dong-ryang in the Chung-buk lines in Korea were selected to investigate the state of track and roadbed. And three places were chosen among 1,700 spots where mud-pumping was frequently occurred and maintenance required. At the curved section with radius of 500m between Mock-haeng and Dong-ryang, we divided this testing site into 5 section and 4 different types of geotextile were installed and left the last section with no reinforcement. Total length of the test site was 200m and individual length of each site was 40 m. In order to understand the state and the strength of prepared roadbed, stiffness and physical properties of the roadbed soil were evaluated and analyzed. Also, after the installation, mud-pumping, settlement of elastic or plastic sleeper, failure of track, wheel-loads, lateral force and earth pressures were investigated.

  • PDF

Compressional Properties of Fabrics at Low Pressure to Assess Real Fabric Handle (직물의 태 예측에 근접한 직물의 저응력 압축특성 측정)

  • Na, Young-Joo
    • Fashion & Textile Research Journal
    • /
    • v.1 no.4
    • /
    • pp.358-362
    • /
    • 1999
  • Twenty-three fabrics of varying thicknesses and weights were subjected to the maximum pressures of 10, 20, 35, 50 and 70 $gf/cm^2$ to yield pressure-thickness curves. Compression property values were plotted according to the amount of pressure applied to the samples. Pressure increases resulted in decreases in LC (compressional curve linearity), increases in WC (compressional energy) and no change in RC (compressional resilience). The best-fit lines are found separately according to pressures. The thickest fabrics exhibited the highest LC and WC values. The slopes varied different according to the pressure applied, with a pressure 50 $gf/cm^2$ exhibiting the steepest slope at We. The pressure of 20 $gf/cm^2$ correlated most closely with the hand-evaluation test results, yielding Spearmans correlation coefficients of .86 and .82 respectively for the LC and WC.

  • PDF

Behavior and design of stainless steel tubular member welded end connections

  • Kiymaz, Guven;Seckin, Edip
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.253-269
    • /
    • 2014
  • Among the various alternatives to make a steel tubular member connection, making a slotted and gusset plate welded connection is one of the most frequently preferred alternatives. This type of connection is essentially an end connection that is made by slotting the tube longitudinally, inserting the gusset plate and then placing longitudinal fillet welds at the tube-to-plate interface. In this paper an experimental study on the behaviour of such connections in stainless steel is presented. 24 specimens were tested under concentrically applied axial tensile forces for varying tube-to-gusset plate weld lengths. Both circular and box section members were considered in the test program. Load-deformation curves were obtained and comparisons were made in terms of strength and ductility. The results obtained from the study were then critically examined and compared with currently available design guidance for slotted gusset plate welded tubular end connections. It is noted that no specific rules exist in international specifications on structural stainless steel which cover the design of such connections. Therefore, the results of this study are compared with the existing design rules for carbon steel.

The Durability of Polybutylene Succinate Monofilament for Fishing Net Twines by Outdoor Exposure Test (옥외 노출시험에 의한 PBS 단일섬유 망사의 내구성 변화)

  • Park, Seong-Wook;Kim, Seong-Hun;Lim, Ji-Hyun;Choi, Hea-Sun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.4
    • /
    • pp.766-774
    • /
    • 2013
  • Biodegradable polybutylene succinate(PBS) is a kind of environmentally friendly plastics for fisheries, because it can mitigate the ghost fishing problem caused by gill-net and trap fisheries. To evaluate durability of PBS monofilament, each of different diameter 3 types of monofilaments were spun and exposed to 56 month outdoor and then their gravity, modification of surface, breaking strength, and elongation were analysed. The gravity of PBS monofilament was estimated to be approximately 1.24 when spinning ratio from 4.8 to 6.1. PBS monofilaments did not show any crack after 56 month exposed to outdoor and load-elastic elongation curve was showed sigmoid type. Decreasing ratio of elongation was appeared in the thinnest monofilament 0.2mm diameter and breaking strength was in the thickest monofilament 0.4mm diameter. Breaking strength and elongation at break were decreased rapidly after 48 month exposed to outdoor. Breaking strength reduced linearly after 48 month exposure, while no such linear relationship was found in the case of elongation at break. In results, it was investigated that the durability of PBS monofilament nets for gillnet and trap were 24, 50 month when keep to land, respectively.

Load Transfer Mechanism of a Hybrid Beam-Column Connection System with Structural Tees

  • Kim, Sang-Sik;Choi, Kwang-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.199-205
    • /
    • 2006
  • The composite frame system with reinforced concrete column and steel beam can be improved in its structural efficiency by complementing the shortcomings of the two systems. The system, however, has many inherent problems in practical design and construction process due to the dissimilarities of the materials. Considering these circumstance, this research aims for the development of a composite structural system which connects the steel beams to the R/C columns with higher structural safety and economy. Basically, the proposed connection system is composed of four split tees, structural angles reinforced by a stiffener, high strength steel rods, connecting plates and shear plates. Structural tests have been carried out to investigate the moment transfer mechanism 1Tom the beam flange to steel rods or connecting plates through the structural angle reinforced by a stiffener. The four prototype specimens have been tested until the flange of the beam reached a plastic state. The test results indicated that no distinct material dissimilarities between concrete and steel have been detected for the proposed hybrid beam-column connection system and that the stress transfer through the structural angle between the beam flange and steel rods or connecting plates was very encouraging.

Preload effects on behaviour of FRP confined concrete: Experiment, mechanism and modified model

  • Cao, Vui Van
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.597-610
    • /
    • 2020
  • Stress-strain models of fibre reinforced polymer (FRP) confined concrete have been widely investigated; however, the existing load which is always supported by structures during the retrofitting phase, namely 'preload', has been neglected. Thus, preload effects should be clarified, providing insightful information for FRP retrofitting of structures with preload conditions. Towards this aim, experiments were performed for 27 cylinder concrete specimens with the diameter 150 mm and the height 300 mm. Three specimens were used to test the compressive strength of concrete to compute the preloads 20%, 30% and 40% of the average strength of these specimens. Other 24 specimens were divided into 2 groups; each group included 4 subgroups. Four subgroups were subjected to the above preloads and no preload, and were then wrapped by 2 FRP layers. Similar designation is applied to group 2, but wrapped by 3 FRP layers. All specimens were tested under axial compression to failure. Explosive failure is found to be the characteristic of specimens wrapped by FRP. Experimental results indicated that the preload decreases 12-13% the elastic and second stiffness of concrete specimens wrapped by 2 FRP layers. The stiffness reduction can be mitigated by the increase of FRP layers. Preload negligibly reduces the ultimate force and unclearly affects the ultimate displacement probably due to complicated cracks developed in concrete. A mechanism of preload effects is presented in the paper. Finally, to take into account preload effects, a modification of the widely used model of un-preload FRP confined concrete is proposed and the modified model demonstrated with a reasonable accuracy.

Changes of the Hand Grip Strength accodring to Shoulder joint Angle (견관절의 각도에 따른 악력변화)

  • Chu Min;Hwang Byung-Deog
    • The Journal of Korean Physical Therapy
    • /
    • v.10 no.2
    • /
    • pp.77-86
    • /
    • 1998
  • The shoulder joint permit ate greatest mobility of any joint area carries out the importment function of stabilization for hand use. So handgrip activity is important to evaluate while assessing shoulder load in manual work. There was an association between static handgrip and shoulder muscle activity. The purpose of this study was to find out the changes of the hand grip strength according to shouter an81e. One hundred (50 female, 50 male) college adult volunteers with no known shoulder dysfunction participated subject in three positions with elbow extension: (1) shoulder $0^{\circ}$ flexion (2) shoulder $90^{\circ}C$ flexion (3)shoulder $180^{\circ}C$ flexion. The paired t-test was used to determine the different in grip strength between right and left hand at shouter position change. All, there was significiant for all three position by right and left shoulder (p<0.001). In mon, the ANOVA results revealed not a significiant F-ratio fer all three position by right and left hand. In woman, revealed significiant (p<0.05).

  • PDF

Soil Properties of Bedding Bone for Concrete Faced Rockfill Dam (콘크리트 표면차수벽형 석괴댐 지지층의 토질특성)

  • 배종순;성영두
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-62
    • /
    • 1996
  • The bedding zone which influence directly to the safety of dam is supporting the face slab under hydraulic load in concrete faced rockfill dam. In case that leakage is developed due to various ruptured joint or cracks of face slab and etc., the bedding zone should limit the leakage by low permeability and keep the internal stability. In this study for the proper coefficient of permeability various properties, such as gradation, dry density, performance of embankment work and etc. were analysed. The results from the large scale test of permeability and density are summerized as follows : 1. Coefficient of permeability is decreased clearly by increase of dry density. 2. The particles smaller than the No.4 strive( p,) greatly influences the permeability under dry density of 2.24t 1 m3. 3. In case of C.40 and p,40%, even if dry density decreased to 2.0t/m3, the permeability coefficient is assumed to u x1-scm/s and internal stability is abtained. 4. Generally in dam construction since dry density and uniformity coefficient of bedding zone were higher than 2.2t/m3 and 50 respectively p, of 30~40% is assumed to be suitable and permeability coefficient of below 1$\times$10-3cm l s is expectable.

  • PDF

A STUDY ON THE FRACTURE TOUGHNESS OF DENTAL AMALGAMS (치과용(齒科用) 아말감의 파괴인성(破壞靭性)에 관한 연구(硏究))

  • Huh, Hyeon-Do;Kim, Yung-Hai
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.1
    • /
    • pp.20-32
    • /
    • 1990
  • The plane strain fracture toughness of a material characterize the resistance to fracture in the presence of a sharp crack under severe tensile condition. Fracture toughness can be determined by indentation method. The purpose of this study was to investigate the fracture toughness of dental amalgams by measuring the plane strain fracture toughness and the fracture toughness from indentation method. Two conventional and four high copper amalgam alloys were employed for this study. The amalgams were prepared according to the A.D.A. spec. No. 1 and inserted into the specially designed mould with the single edge notch specimen to use in 3-point bending method. The specimens (20mm long, 4mm wide, 2mm thick) were stored at $37^{\circ}C$ for 1 week, and tested in 3-point bending by means of Instron at a cross-head speed of 1mm/min. In indentation method, the specimens were made in same manner as single edge notch specimens. The test was conducted with Vickers hardness tester at 10kg load. The following results were obtained. 1. The plane strain fracture toughness and the fracture toughness from indentation method were higher in the low copper amalgams than the high copper amalgams. 2. In high copper amalgams, the fracture toughness of amalgams decreases according as the copper contents increase. 3. In similar copper contents, the single composition amalgams have a higher fracture toughness than the admixed amalgams.

  • PDF

Experimental evaluation of splicing of longitudinal bars with forging welding in flexural reinforced concrete beams

  • Sharbatdar, Mohammad K.;Jafari, Omid Mohammadi;Karimi, Mohammad S.
    • Advances in concrete construction
    • /
    • v.6 no.5
    • /
    • pp.509-525
    • /
    • 2018
  • In this paper the application of forging process as benefit technique in Reinforced Concrete (RC) beam bars and comparison to lap splices was experimentally investigated with four concrete beam specimens with same dimensions and reinforcement details. The reference specimen was with no splices and the other three beams were with different splices (100% forging in the middle, 50% forging, and 100% lap splices in the middle). Beams were tested with the four points load system. Experimental test results indicated that using forging process as new bar splicing method can have high effects on increasing ductility and energy dissipation of concrete structures. It also proved that this method increased the flexural rigidity, energy absorption, and ductility of the RC beams. And also this research results showed that the flexural capacity and ductility of the beam with 50% forging were respectively increased up to 10% and 75% comparing to that of reference specimen, but the energy absorption of this beams was decreased up to 27%. The ductility of beam with 50% forging was increased up to 25% comparing the ductility of beam with 100% forging.