• 제목/요약/키워드: No Failures test

검색결과 69건 처리시간 0.021초

독립현가형 AWD 차량의 구동축 가속 수명 평가에 관한 연구 (A Study on the Accelerated Life Evaluation of Drive Shaft for Independent Suspension type AWD Vehicle)

  • 김도식
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권4호
    • /
    • pp.343-356
    • /
    • 2011
  • This paper proposes an accelerated life evaluation of drive shaft. The life test of drive shaft for independent suspension type AWD vehicle should be performed by use of the least test sample because many number of samples can't be used for the test because of its mass capacity and high price. We calculated the no failure test time by application of no failure test concept, and the already performed test data for drive shaft are applied for some kinds of reliability coefficients which are needed for calculation of life test time. And, for analysis of real driving condition of vehicle, the load spectrum is prepared using the needed road condition and vehicle data. The inverse power model is used for accelerated life test. The equivalent torque of load spectrum is achieved by use of Miner's Rule, and then the final accelerating condition is determined by decision of the accelerated test torque. This paper shows that the accelerated life test results corresponds with the target life and the proposed life test method can be very well applied to no failure life test for mass capacity machinery components.

Thermal Impact Characteristics by Forest Fire on Porcelain Insulators for Transmission Lines

  • Lee, Won-Kyo;Choi, In-Hyuk;Choi, Jong-Kee;Hwang, Kab-Cheol;Han, Se-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권4호
    • /
    • pp.143-146
    • /
    • 2008
  • In this study the thermal impact characteristics by forest fire are extensively investigated using temperature controlled ovens. The test conditions for thermal impact damage are simulated according to the characteristics of natural forest fire. The test pieces are suspension porcelain insulators made by KRI in 2005 for transmission lines. In the thermal impact cycle tests with $300\;^{\circ}C$ thermal impact gradient (-70 to $230\;^{\circ}C$), cycling in 10 minute periods, no critical failures occurred in the test samples even with long cycle times. But in tests with thermal impact gradient from room temperature to $200-600\;^{\circ}C$, cycling in 10 to 30 minute periods, there were critical failures of the porcelain insulators according to the thermal impact gradient and quenching method. In the case of thermal impact by forest fire, it was found of that duration time is more important than the cycling time, and the initiation temperature of porcelain insulator failures is about $300\;^{\circ}C$, in the case of water quenching, many cracks and fracture of the porcelain occurred. It was found that the thermal impact failure is closely related to the displacement in the cement by thermal stress as confirmed by simulation. It was estimated that the initiation displacement by the thermal impact of $300\;^{\circ}C$ is about 0.1 %. Above 1% displacement, it is expected that the most porcelain insulators would fail.

Failure Investigation of Fire-Side Water-Wall Tube Boiler

  • Fatah, M.C.;Agustiadi, D.;Pramono, A.W.
    • Corrosion Science and Technology
    • /
    • 제20권5호
    • /
    • pp.242-248
    • /
    • 2021
  • Unforeseen failures of boilers in power plants may affect the continuation of electricity generation. Main failures in boilers are influenced by the tube material, tube position, boiler service temperature and pressure, and chemical composition of the feed water and coal. This investigation was intended to find answers on the causes and mechanism of failure of the fire-side boiler water-wall tubes, due to perforation and corrosion. The tube conformed to the material requirements in terms of its chemical composition and hardness. Microscopic examination showed ferrite and pearlite indicating no changes in its microstructure due to the temperature variation. SEM test showed a single layer and homogenous film density particularly on the area far from perforation. However, layers of corrosion product were formed on the nearby perforation area. EDX showed that there were Na, Ca, S, and O elements on the failed surface. XRD indicated the presence of Fe2O3 oxide. The failure mechanism was identified as a result of significant localized wall thinning of the boiler water wall-tube due to oxidation.

백플레인 형식 항전장비에서 발생하는 간헐결함 탐지를 위한 고장물리 기반의 요구도 개발 (Requirements Development for Intermittent Failure Detection of an Avionics Backplane based on Physics-of-Failure)

  • 이호용;이익훈
    • 한국항공운항학회지
    • /
    • 제27권3호
    • /
    • pp.15-23
    • /
    • 2019
  • This paper contains analyses and development processes of the requirements to detect the possible intermittent failure in an old avionics backplane. Interconnections for signal transmission between electronic components, such as Pin-to-PCB, FPCB-to-FPCB, pin-to-FPCB, and pint-to-wire, were selected as the main cause of intermittent failure by analyzing target equipment and documents. The possibility of detecting intermittent failures occurring in the target equipment is verified by physics-of-failure analyses. In order to verify the occurrence of intermittent failures and their detectability, latching continuity circuit testers were manufactured and accelerated life tests were performed by applying temperature and vibration cycle in consideration of flight conditions. Through the above process, the detection requirements for the major intermittent failure in the target avionics backplane was developed.

카본-페놀 직물복합재료의 층간인장물성 측정기법 (Test Method on Interlaminar Tensile Properties of Carbon fabric Reinforced Phenolic Composites)

  • 이지형;김형근;이형식
    • 한국추진공학회지
    • /
    • 제10권3호
    • /
    • pp.48-52
    • /
    • 2006
  • 적층 복합재료를 구조재로 이용할 경우 발생하는 구조적 파단과 두꺼운 원환체 형상의 복합재를 성형 할 경우 발생하는 층간파단(interlaminar failures)은 주로 층간 인장응력에 기인하기 때문에 적층 복합재료의 층간인장 물성은 구조해석 시 요구되는 물성이다. 그러나 복합재료의 층간 인장물성은 국제적으로 통일된 시험방법 및 시험규격이 없고 신뢰할 수 있는 물성자료가 없어 자체적인 평가를 수행하여야 한다. 본 논문에서는 국내에서 내열/구조재로 생산되고 있는 카본/페놀 복합재료의 층간 인장물성 비교/평가에 앞서 층간 인장물성의 측정에 대한 실험적 연구를 수행하였다. 시험방법 연구에서는 알루미늄 시편을 이용하여 재료의 탄성한계 내에서 몇 가지 실험을 수행하여 시험방법을 비교 평가하였으며 그 결과로 선정한 시험방법을 복합재료에 적용하였다. 실험의 결과, 복합재 시편의 모든 면에서 같은 경향의 변형률을 얻음에 따라 저 하중에서 파단이 발생하는 복합재료의 층간 인장물성 최적 시험 기법을 확보하였다.

카본-페놀 직물복합재료의 층간인장물성 측정기법 (Test Method on Interlaminar Tensile Properties of Carbon Fabric Reinforced Phenolic Composites)

  • 이지형;김형근;이형식;박영채;주세균
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.81-85
    • /
    • 2006
  • 적층 복합재료를 구조재로 이용할 경우 발생하는 구조적 파단과 두꺼운 원환체 형상의 복합재를 성형할 경우 발생하는 층간파단(interlaminar failures)은 주로 층간 인장응력에 기인하기 때문에 적층 복합재료의 층간인장 물성은 구조해석 시 요구되는 물성이다. 그러나 복합재료의 층간 인장물성은 세계적으로 통일된 시험방법 및 시험규격이 없고 신뢰할 수 있는 물성자료가 없어 자체적인 평가를 수행하여야 한다. 본 논문에서는 국내에서 내열/구조재로 생산되고 있는 카본/페놀 복합재료의 층간 인장물성 비교/평가에 앞서 층간 인장물성의 측정에 대한 시험적 연구를 수행하였다. 시험방법 연구에서는 알루미늄 시편을 이용하여 재료의 탄성한계 내에서 몇 가지 시험을 수행하여 시험방법을 비교 평가하였으며 그 결과로 선정한 시험방법을 복합재료에 적용하였다. 시험의 결과, 복합재 시편의 모든 면에서 같은 경향의 변형률을 얻음에 따라 저 하중에서 파단이 발생하는 복합재료의 층간 인장물성 최적 시험기법을 확보하였다.

  • PDF

6.6 kV 전동기 고정자 권선의 절연진단과 절연파괴 특성 (Characteristics of Insulation Diagnosis and Failure in 6.6 kV Motor Stator Windings)

  • 김희동;공태식
    • 한국전기전자재료학회논문지
    • /
    • 제25권4호
    • /
    • pp.309-314
    • /
    • 2012
  • To assess the condition of stator insulation, nondestructive and overpotential tests were performed on four high voltage motors. The stator windings under these tests have nominal ratings of 6.6 kV. After completing nondestructive tests, the AC overvoltage applied to the stator windings was gradually increasing until insulation failure in order to obtain the breakdown voltage. No. 1, No. 2, No. 3 and No. 4 of 6.6 kV motors failed near rated voltage of 18.4 kV, 19.8 kV, 19.7 kV and 21.7 kV, respectively. The breakdown voltage of four motors was higher that expected for good quality coils(14.2 kV) in 6.6 kV motors. Almost all of failures were located in a line-end coil at the exit from the core slot. The breakdown voltages and the types of defects showed strong relation to the stator insulation tests such as in the case of AC current, dissipation factor($tan{\delta}$) and partial discharge magnitude.

Development of Life Test Equipment with Real Time Monitoring System for Butterfly Valves

  • Lee, Gi-Chun;Choi, Byung-Oh;Lee, Young-Bum;Park, Jong-Won;Nam, Tae-Yeon;Song, Keun-Won
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권1호
    • /
    • pp.40-46
    • /
    • 2017
  • Small valves including ball valves, gate valves and butterfly valves have been adopted in the fields of steam power generation, petrochemical industry, carriers, and oil tankers. Butterfly valves have normally been applied to fields where in narrow places installing the existing valves such as gate valves and ball valves have proven difficult due to the surrounding area and the heavier of these valves. Butterfly valves are used to control the mass flow of the piping system under low pressure by rotating the circular disk installed inside. The butterfly valve is benefitted by having simpler structure in which the flow is controlled by rotating the disc circular plate along the center axis, whereas the weight of the valve is light compared to the gate valve and ball valve above-mentioned, as there is no additional bracket supporting the valve body. The manufacturing company needs to acquire the performance and life test equipment, in the case of adopting the improving factors to detect leakage and damage on the seat of the valve disc. However, small companies, which are manufacturing the industrial valves, normally sell their products without the life test, which is the reliability test and environment test, because of financial and manpower problems. Furthermore, the failure mode analysis of the products failed in the field is likewise problematic as there is no system collecting the failure data on sites for analyzing the failures of valves. The analyzing and researching process is not arranged systematically because of the financial problem. Therefore this study firstly tried to obtain information about the failure data from the sites, analyzed the failure mode based on the field data collected from the customers, and then obtained field data using measuring equipment. Secondly, we designed and manufactured the performance and life test equipment which also have the real time monitoring system with the naked eye for the butterfly valves. The concept of this equipment can also be adopted by other valves, such as the ball valve, gate valve, and various others. It can be applied to variously sized valves, ranging from 25 mm to large sized valves exceeding 3000 mm. Finally, this study carries out the life test with square wave pressure, using performance and life test equipment. The performance found out that the failures from the real time monitoring system were good. The results of this study can be expanded to the other valves like ball valves, gate valves, and control valves to find out the failure mode using the real time monitoring system for durability and performance tests.

생체 임피던스

  • 서병설
    • 대한의용생체공학회:의공학회지
    • /
    • 제6권2호
    • /
    • pp.63-68
    • /
    • 1985
  • Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70$\pm$1.32mmHg/min)compared to CF dialyzers(4.32$\pm$0.55mmHg/min)(p<0.05). However, there was no observable difference in the UFR between the two dialyzers. Neither APD nor UFR showed any significant increase with an increasing number of reuses for up to more than 20reuses. A substantial number of failures observed in APD(larger than 20mmHe/min)on the reused dialyzers(2 out of 40 CP and S out 26 C-DAK) were attributed to the Possible damage on the fibers. The CF 15-11 HFDs which failed APD test did not show changes in the UFR compared to normal dialyzers indicating that APD is a more sensitive test than UFR test to evaluate the integrity of the fibers.

  • PDF

Evaluation of the seismic performance of butt-fusion joint in large diameter polyethylene pipelines by full-scale shaking table test

  • Jianfeng Shi;Ying Feng;Yangji Tao;Weican Guo;Riwu Yao;Jinyang Zheng
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3342-3351
    • /
    • 2023
  • High-density polyethylene (HDPE) pipelines in nuclear power plants (NPPs) have to meet high requirements for seismic performance. HDPE pipes have been proved to have good seismic performance, but joints are the weak links in the pipelines, and pipeline failures usually initiate from the defects inside the joints. Limited data are available on the seismic performance of butt-fusion joints of HDPE pipelines in NPPs, especially in terms of defects changes inside the joints after earthquakes. In this paper, full-scale shaking table tests were performed on a test section of suspended HDPE pipelines in an NPP, which included straight pipes, elbows, and 10 butt-fusion joints. During the tests, the seismic load-induced strain of the joints was analyzed by strain gauges, and it was much smaller than the internal pressure and self-weight-induced strain. Before and after the shaking table tests, phased array ultrasonic testing (PA-UT) was conducted to detect defects inside the joints. The locations, numbers, and dimensions of the defects were analyzed. It was found that defects were more likely to occur in elbows joints. No new defect was observed after the shaking table tests, and the defects showed no significant growth, indicating the satisfactory seismic performance of the butt-fusion joints.