• Title/Summary/Keyword: Nitrous oxide ($N_2O$)

Search Result 203, Processing Time 0.026 seconds

LCA on Lettuce Cropping System by Top-down Method in Protected Cultivation (시설상추 생산체계에 대한 top-down 방식 전과정평가)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1185-1194
    • /
    • 2011
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle inventory) DB for lettuce production system in protected cultivation. The results of data collection for establishing LCI DB showed that the amount of fertilizer input for 1 kg lettuce production was the highest. The amounts of organic and chemical fertilizer input for 1 kg lettuce production were 7.85E-01 kg and 4.42E-02 kg, respectively. Both inputs of fertilizer and energy accounted for the largest share. The amount of field emission for $CO_2$, $CH_4$ and $N_2O$ for 1 kg lettuce production was 3.23E-02 kg. The result of LCI analysis focused on GHG (Greenhouse gas) showed that the emission value to produce 1 kg of lettuce was 8.65E-01 kg $CO_2$. The emission values of $CH_4$ and $N_2O$ to produce 1 kg of lettuce were 8.59E-03 kg $CH_4$ and 2.90E-04 kg $N_2O$, respectively. Fertilizer production process contributed most to GHG emission. Whereas, the amount of emitted nitrous oxide was the most during lettuce cropping stage due to nitrogen fertilization. When GHG was calculated in $CO_2$-equivalents, the carbon footprint from GHG was 1.14E-+00 kg $CO_2$-eq. $kg^{-1}$. Here, $CO_2$ accounted for 76% of the total GHG emissions from lettuce production system. Methane and nitrous oxide held 16%, 8% of it, respectively. The results of LCIA (Life Cycle Impact assessment) showed that GWP (Global Warming Potential) and POCP (Photochemical Ozon Creation Potential) were 1.14E+00 kg $CO_2$-eq. $kg^{-1}$ and 9.45E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively. Fertilizer production is the greatest contributor to the environmental impact, followed by energy production and agricultural material production.

Effects of Additives on Greenhouse Gas Emission during Organic Waste Composting: A Review and Data Analysis (첨가제가 유기성 폐기물 퇴비화 과정 중 온실가스 발생에 미치는 영향: 리뷰 및 데이터 분석)

  • Seok-Soon Jeong;Byung-Jun Park;Jung-Hwan Yoon;Sang-Phil Lee;Jae-E. Yang;Hyuck-Soo Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.358-370
    • /
    • 2023
  • Composting has been proposed for the management of organic waste, and the resulting products can be used as soil amendments and fertilizer. However, the emissions of greenhouse gases (GHGs) such as CO2, CH4, and N2O produced in composting are of considerable concern. Hence, various additives have been developed and adopted to control the emissions of GHGs. This review presents the different additives used during composting and summarizes the effects of additives on GHGs during composting. Thirty-four studies were reviewed, and their results showed that the additives can reduce cumulative CO2, CH4, and N2O emission by 10.5%, 39.0%, and 28.6%, respectively, during composting. Especially, physical additives (e.g., biochar and zeolite) have a greater effect on mitigating N2O emissions during composting than do chemical additives (e.g., phosphogypsum and dicyandiamide). In addition, superphosphate had a high CO2 reduction effect, whereas biochar and dicyandiamide had a high N2O reduction effect. This implies that the addition of superphosphate, biochar, and dicyandiamide during composting can contribute to mitigating GHG emissions. Further research is needed to find novel additives that can effectively reduce GHG emissions during composting.

Emissions of Nitrous oxide from Wastewater Treatment Process by Floating Flux Chamber (Floating Flux Chmber에 의한 하.폐수처리시설에서의 아산화질소 발생특성)

  • 전의찬;장영기;최경식;김전희;서경애;박종호;이성호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.440-441
    • /
    • 2002
  • 지구온난화를 유발하는 온실가스의 대표적인 성분으로는 이산화탄소, 메탄, 아산화질소, CFC 등을 들 수 있으며, 주요 온실기체들에 대한 대기 중 농도가 과거보다 현저하게 증가되었음이 확인되고 있다. $N_2$O은 대기 중의 농도는 낮으나 상대적으로 지구온난화에 기여하는 정도가 $CO_2$에 비해 질량기준으로 310배가 높고, 생체 발생량이 크기 때문에 지구규모수지에 있어서 신중하게 고려되어야 한다. 온실기체의 국가배출자료는 기후변화협약과 관련된 국제협상 및 국내 저감대책 수립에 없어서는 안될 중요한 기초자료이다. (중략)

  • PDF

Impacts of Elevated $CO_2$ on Algal Growth, $CH_4$ Oxidation and $N_2O$ Production in Northern Peatland (이탄습지에서 이산화탄소의 농도가 조류의 증식, 메탄 산화 및 아산화질소 생성에 미치는 영향)

  • Freeman, Chris;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.261-266
    • /
    • 2001
  • Effects of elevated carbon dioxide ($CO_2$) on soil microbial processes were studied in a northern peatland. Intact peat cores with surface vegetation were collected from a northern Welsh fen, and incubated either under elevated carbon dioxide (700 ppm) or ambient carbon dioxide (350 ppm) conditions for 4 months. Higher algal biomass was found under the elevated $CO_2$ condition, suggesting $CO_2$ fertilization effect on primary production, At the end of the incubation, trace gas production and consumption were analyzed using chemical inhibitors. For methane ($CH_4$ ), methyl fluoride ($CH_3F$) was applied to determine methane oxidation rates, while acetylene ($C_2H_2$) blocking method were applied to determine nitrification and denitrification rates. First, we have adopted those methods to optimize the reaction conditions for the wetland samples. Secondly, the methods were applied to the samples incubated under two levels of $CO_2$. The results exhibited that elevated carbon dioxide increased both methane production (210 vs. $100\;ng\;CH_4 g^{-1}\;hr^{-1}$) and oxidation (128 vs. $15\;ng\;CH_4 g^{-1}\;hr^{-1}$), resulting in no net increase in methane flux. For nitrous oxide ($N_2O$) , elevated carbon dioxide enhanced nitrous oxide emission probably from activation of nitrification process rather than denitrification rates. All of these changes seemed to be substantially influenced by higher oxygen diffusion from enhanced algal productivity under elevated $CO_2$.

  • PDF

The Partial Oxidation of Methane by Nitrous Oxide over Silica-Supported 12-Molybdophosphoric Acid (실리카 담지 12-몰리브도인산 촉매상에서의 아산화질소에 의한 메탄의 부분산화반응)

  • Hong, Seong-Soo;Woo, Hee-Chul;Ju, Chang-Sik;Lee, Gun-Dae;Moffat, J.B.
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.139-148
    • /
    • 1994
  • The partial oxidation of methane with nitrous oxide on silica-supported metal-oxygen cluster compounds, known as heteropoly acids, has been studied. The effects of several variables such as reaction temperature, partial pressure of reactants, residence time, loading of the catalysts, and pretreatment temperature, on the conversion and product distribution were observed. The kinetics also has been studied. The conversion and yield of formaledehyde show maximum values at a loading of 20 wt%. The apparent reaction order of methane conversion is ca. 1.0 with respect to $CH_4$ and ca. 0.4 with respect to $N_2O$. In addition, the apparent activation energy is 30.78 kcal/mole. The addition of small quantities methane whereas water introduced to the reactant decreased the activity of catalyst under present study.

  • PDF

Annual Variability in Nitrous Oxide Emission from Agricultural Field Soils (농경지 아산화질소 배출계수의 연간 변동 특성 분석)

  • Hyun, Junge;Yoo, Sin Yee;Yang, Xing Ya;Lee, Jong Eun;Yoo, Gayoung
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.305-312
    • /
    • 2017
  • We aimed at investigating the difference in $N_2O$ emission factors of chemical and organic fertilizers and identifying the main factors influencing annual fluctuations in $N_2O$ emission. We conducted two-year experiments in 2016 and 2017 in an agricultural field planted with sweet potato (Ipomoea batatas). Treatments included chemical NPK fertilizer (NPK) and chicken compost application at $10\;ton\;ha^{-1}$, $20\;ton\;ha^{-1}$, and $30\;ton\;ha^{-1}$ rates (CK1, CK2 and CK3). Control was also employed with no addition. Results showed that $N_2O$ emission rates were significantly related with soil water status and soil available N contents. Significant correlation between % water filled pore space (WFPS) and $N_2O$ emission was observed only when the %WFPS was greater than 40% and during the initial stage of the experiment (<60 d). Comparison of the emission factors in 2016 and 2017 showed us that the emission factor was greater in 2016 when the %WFPS was maintained higher by 16.5% compared to that in 2017. In 2016, the emission factor of organic fertilizer was higher than that of chemical fertilizer, while in 2017, the pattern was reversed. Annual variability in $N_2O$ emission could also be originated from the available N contents remaining in soil after being taken up by plants. If we apply excessive N fertilizer, the soil would contain excess amount of N which was not uptaken by plants, leading to a huge increase in $N_2O$ emission. This case would overestimate emission factor, which was the case for the organic fertilizer in 2016. Over-fertilization should be avoided when we set up an experiment to determine $N_2O$ emission factor.

A Study of Denitrification in the Grassland with an Acetylene Inhibition Technic (초지(草地)에서의 아세칠렌 조해법(阻害法)에 의(依)한 탈질(脫窒) 연구(硏究))

  • Jo, Jin-Ki;Choi, Jyung;Park, Woo-Churl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.353-357
    • /
    • 1983
  • A field study was conducted for 20 soil columns to investigate the denitrification in the grassland with a method introducing $C_2H_2$ in the denitrifying system. Since acetylene blocked the pathway from $N_2O$ to $N_2$, all the free products of denitrification consisted of nitrous oxide. In this study, denitrification was measured as $N_2O$. Results are as follows. 1. In most of boils examined, denitrification was observed as $N_2O$ when acetylene was introduced into the denitrification system while $N_2O$ was scarcely evolved without acetylene in the system. 2. Denitrification occurred even in the grassland soils when they were saturated with water. Denitrification was nil or negligible without water saturation. 3. Denitrification loss far 3 days incubation(from 13th to 16th day after urea application) was 4.2% in average and 14.2% in maximum. 4. Soil chemical properties such as nitrate nitrogen, nitrite nitrogen, total nitrogen, total carbon and mineralizable carbon did not show clear relationships with denitrificatien, probably since soil chemical properties were analysed for the soils after incubation.

  • PDF

Analysis of statistical models on temperature at the Seosan city in Korea (충청남도 서산시 기온의 통계적 모형 연구)

  • Lee, Hoonja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1293-1300
    • /
    • 2014
  • The temperature data influences on various policies of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly and seasonal temperature data at the northern part of the Chungcheong Namdo, Seosan monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). The result showed that the monthly ARE model explained about 39-63% for describing the temperature. However, the ARE model will be expected better when we add the more explanatory variables in the model.

TREATMENT OF HEAVY MANDIBULAR BUCCAL FRENUM USING APICALLY POSITIONED FLAP UNDER DEEP SEDATION IN CHILDREN (소아환자의 깊은 진정요법 하에서 근단변위 판막술을 이용한 거대협소대의 치료)

  • Kim, Jong-Bin;Yoon, Hyung-Bae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.1
    • /
    • pp.69-76
    • /
    • 1999
  • The mandibular buccal frenum is defined as a fold of mucous membrane at the posterior labial vestibule and attaches the lips and the cheeks to the alveolar mucosa, gingiva, and underlying periosteum. The buccal frenum becomes a problem when its attachment is too close to the marginal gingiva. It may then pull on healthy gingiva, encourage plaque formation and interfere with tooth brushing. Especially, heavy buccal frenum mucogingivally results in insufficent attached gingiva, inadequate vestibular depth and high frenum attachment and also difficulty in eruption of mandibular premolar. Frenotomy, frenectomy and mucogingival surgery are used in treating heavy buccal frenum. Frenotomy with autogenous free gingival graft has been used popularly because of its stable result. But, it is difficult in younger children because of inadequate donor site, difficulty in making recipient site and behavior management. Frenotomy with apically positioned flap is considered as more efficient way for a very young child with heavy buccal frenum. Additionally, modified deep sedation with $N_2O-O_2$ can be used as an adjunct for the effective treatment outcome. Decrease in muscle pull, adequate width of attached gingiva and increased vestibular depth can be expected from this treatment approach.

  • PDF

Visualization of Transient Ignition Flow-field in a 50 N Scale N2O/C2H5OH Thruster (50 N급 아산화질소/에탄올 추력기의 점화 과도 유동장 가시화)

  • Kim, Dohun;Park, Jaehyeon;Yu, Myunggon;Lee, Kyungeun;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.11-18
    • /
    • 2014
  • The combustion flowfield at the near-injector region of a 50 N scale $N_2O/C_2H_5OH$ thruster was visualized using shadowgraph technique. The explosive ignition was occurred at the design spray condition, and the expanding combustion gas quenched the flame immediately. Approximately after 83 ms from the initial ignition, the propellant spray was re-ignited, and the flame was stabilized after 23 ms elapsed. In the increased oxidizer flow rate condition, the transient pressure at the moment of ignition was smoother than explosive ignition, and the blow down phenomenon was not appeared in the same operating sequence. In addition, the flame was stabilized within 17 ms, and it is caused by improved propellants mixing before ignition.