• Title/Summary/Keyword: Nitrogenase

Search Result 85, Processing Time 0.025 seconds

Responses of Mungbean Varieties to Rhizobium Inoculation in respect of Nodulation, Nitrogenase Activity, Dry Matter Yield, and Nitrogen Uptake

  • A.R.M. Solaiman;M.M. Haque
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.355-360
    • /
    • 2003
  • The responses of six mungbean [Vigna radiata (L.) Wilczek] varieties to Rhizobium inoculation on number and dry weight of nodules, nitrogenase activity of root nodule bacteria, dry weight of shoot and root, nitrogen content, and uptake by shoot were investigated. The mungbean varieties were BARI Mung-2, BARI Mung-3, BARI Mung-4, BARI Mung-5, BINA Moog-2, and BU Mung-1. Two-third seeds of each variety were inoculated with Rhizobium inoculant and the remaining one-third seeds were kept uninoculated. Rhizobium strains TAL 169 and TAL 441 were used for inoculation of seeds. Inoculation of seeds with Rhizobium strains significantly increased nodulation, nitrogenases activity, dry matter production, nitrogen content, and uptake by shoot of the crop compared to uninoculated control. There was positive correlation among the number and dry weight of nodules, nitrogenase activity, dry weight of shoot and root, nitrogen content, and uptake by shoot of the crop. It was concluded that BARI Mung-4 in association with Rhizobium strain TAL 169 performed best in recording nodulation, nitrogenase activity, dry matter production, and nitrogen uptake by shoot of mungbean.

Effect of simazine on nitrogen assimilation of rhodopseudomonas sphaeroides (Rhodopseudomonas sphaeroides의 질소 동화작용에 미치는 simazine의 영향)

  • 이혜주;이진애;박인호;선우양일
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.304-309
    • /
    • 1989
  • The effects of simazine [2-chloro-4, 6-bis(methylamino)-s-triazine] on in vivo nitrogenase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase which are important in nitrogen assimilation of Rhodopseudomonas sphaeroides were investigated. Simazine inhibited the synthesis of nitrogenase and glutamine synthetase. The activity of glutamine synthetase in crude extracts of Rhodopseudomonas sphaeroides is less inhibited by simazine than that of glutamate synthase and glutamate dehydrogenase. These results suggest the possibility that simazine inhibits photosynthetic activity and so inhibits the synthesis of nitrogenase and glutamine synthetase in Rhodopseudomonas sphaeroides.

  • PDF

Nitrogenase Derepression and Associated Metabolism in a Microaerophilic Cyanobacterium, Plectonema boryanum

  • Pandey, Kapil Deo;Sukla, Sarkar;Naz, Shaheen;Smita, Chaturvedi;Ajaikumar, Kashyap
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.179-185
    • /
    • 2001
  • Nitrate grown cells of cyanobacterium Plectonema boryanum, transferred to nitrogen stress, evolved nitrogenase catalyzed $H_2$ under microaerophilic condition. Nitrogen ($N_2$) in gs phase, low light intensity, and reducing substances in incubation phase stimulated $N_2$fixation ($H_2\;evolution$). Cyanobacterium grew slowly under microaerobic condition with a low intracellular ammonia pool. Nitrogen sources (${NO_3}^-,{NH_4}^+,\;and\;CH_3NH_3$) inhibited nitrogenase and glutamine synthetase (GS) transferase activity, and methylamine behaved like an ammonical nitrogen source. Depletion of molybdenum (Mo) and addition of tungsten (W) in the incubation medium inhibited $H_2$ evolution, Cyanobacterium was able to take up nitrate and expressed nitrate reductase (NR) activity under microaerophilic condition at an extremely slow rate.

  • PDF

Effects of Osmoprotectants on the Growth and Nitrogenase Activity of Rhizobium and Azospirillum under Osmotic Stress (질소고정균의 성장과 질소고정력에 대한 osmoprotectant의 영향)

  • Gal, Sang-Wan;Choi, Young-Ju
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.53-59
    • /
    • 1998
  • The Rhizobium and Azospirillum spp. were isolated from the root nodules of several leguminous plants and rhizosphere of various paddy rice varieties. The growth of the nitrogen-fixing strains isolated was largely inhibited in yeast extract-mannitol medium (AMA) containing 0.6 M NaCl. In response to osmotic stress, the nitrogen-fixing strains accumulate intracellular free glutamate. The growth and nitrogenase activity of Rhizobium and Azospirillum were increased by addition of osmoprotectants such as proline, glycine betaine, and glutamate during salt stress. Glycine betaine was the most effective among exogenous osmoprotectants tested. In the absence of sodium chloride, nitrogenase activity seem to be slightly decreased by the presence of the proline or glycine betaine. These results revealed that nitrogenase activity was repressed by fixed nitrogens such as proline or glycine betaine.

  • PDF

Optimization of photobiological H2 production using Thiocapsa roseopercisina (광합성 홍색 유황 세균 Thiocapsa roseopercisina에 의한 수소생산 최적화)

  • Kim, Mi-Sun;Lee, Yu-Jin;Lee, Dong-Yeol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.782-786
    • /
    • 2009
  • Thiocapsa roseopersicina NCIB 8347은 purple sulfur bacteria이며 광합성종속영양 조건에서는 nitrogenase 효소계가 유도되어 질소를 고정하며, 수소를 발생한다. 또한 광합성독립영양 조건에서는 hydrogenase 효소계가 유도되어 3~4개 종류의 특성이 다른 hydrogenase가 membrane에 결합되어 있거나, cytoplasma에 존재하며, 이 중의 일부는 산소농도와 온도의 상승에도 비교적 안정하다. 본 연구에서는 T. roseopersicina NCIB 8347이 광합성종속영양 조건에서 수소를 생산할 수 있는 제반 배양조건을 최적화하고, nitrogenase와 일부 hydrogenase역가를 측정하여 purple non-sulfur bacteria, Rhodobacter sphaeroides KD131의 nitrogenase와 비교하여 수소생산을 최적화하였다. 할로겐램프를 8-9 $Klux/m^2$로 조사할 때와 배양온도 $26{\sim}30^{\circ}C$, 배양시간 72시간에서 균체 성장과 수소생산이 가장 높았다. T. roseopersicina NCIB 8347는 광합성 독립영양, 종속영양 조건에서 모두 성장 할 수 있었다.

  • PDF

Factors Afecting Hydrogen Evolution in Chlorobium limicola f. theosulfatophilum NCIB 8327 (Chlorobium limicola f. thiosulfatophilum NCIB 8327에서 수소발생에 영향을 끼치는 요인분석)

  • 나종욱;강사욱
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.553-557
    • /
    • 1992
  • Hydrogen produced by cells of grown Chlorobium limicola f. thiosulfatophilum NCIB 8327 on modified Pfennig's medium containing glutamate as a major nitrogen source, was measured by amperometric method. In this system, oxygen, light. ammonia, methionine sulfoximine, NADPH, ATP, methyl viologen and benzyl viologen are affected. The production of hydrogen in intact cells depends on light intensity. It is also inhibited by adding ammonium ions, but restores immediately by adding methionine sulfoximine. Considering these results, the production of hydrogen in this strain can be mediated by nitrogenase.

  • PDF

$^{13}C$ and $^{57}Fe$ END OR of Nitrogenase: Can it Tell the Substrate-Binding Site in the Active Site?

  • 이홍인
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.18-18
    • /
    • 2002
  • Nitrogenase, comprised of the MoFe and Fe proteins, catalyzes the reduction of dinitrogen to ammonia at ambient temperature and pressure. The MoFe protein contains two metal centers, the P-cluster (Fe8S7-8) and the FeMo-cofactor (Fe7S9:homocitrate), the substrate binding site. Despite the availability of the crystal structure of the MoFe protein, suprisingly little is known about the molecular details of catalysis at the active site, and no small-molecule substrate or inhibitor had ever been shown to directly interact with a protein-bound cluster of the functioning enzyme, until our electron-nuclear double resonance(ENDOR) study of CO-inhibited nitrogenase.(omitted)

  • PDF

Structural Insights and Mechanistic Understanding of Iron-Molybdenum Cofactor Biosynthesis by NifB in Nitrogenase Assembly Process

  • Wonchull Kang
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.736-742
    • /
    • 2023
  • NifB, a radical S-adenosylmethionine (SAM) enzyme, is pivotal in the biosynthesis of the iron-molybdenum cofactor (FeMo-co), commonly referred to as the M-cluster. This cofactor, located within the active site of nitrogenase, is essential for the conversion of dinitrogen (N2) to NH3. Recognized as the most intricate metallocluster in nature, FeMo-co biosynthesis involves multiple proteins and a sequence of steps. Of particular significance, NifB directs the fusion of two [Fe4S4] clusters to assemble the 8Fe core, while also incorporating an interstitial carbide. Although NifB has been extensively studied, its molecular mechanisms remain elusive. In this review, we explore recent structural analyses of NifB and provide a comprehensive overview of the established catalytic mechanisms. We propose prospective directions for future research, emphasizing the relevance to biochemistry, agriculture, and environmental science. The goal of this review is to lay a solid foundation for future endeavors aimed at elucidating the atomic details of FeMo-co biosynthesis.

Growth and Cyanide Degradation of Azotobacter vinelandii in Cyanide-Containing Wastewater System

  • Koksunan, Sarawut;Vichitphan, Sukanda;Laopaiboon, Lakkana;Vichitphan, Kanit;Han, Jaehong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.572-578
    • /
    • 2013
  • Azotobacter vinelandii, a strict aerobic nitrogen-fixing bacterium, has been extensively studied with regard to the ability of $N_2$-fixation due to its high expression of nitrogenase and fast growth. Because nitrogenase can also reduce cyanide to ammonia and methane, cyanide degradation by A. vinelandii has been studied for the application in the bioremediation of cyanide-contaminated wastewater. Cyanide degradation by A. vinelandii in NFS (nitrogen-free sucrose) medium was examined in terms of cell growth and cyanide reduction, and the results were applied for cyanide-contaminated cassava mill wastewater. From the NFS medium study in the 300 ml flask, it was found that A. vinelandii in the early stationary growth phase could reduce cyanide more rapidly than the cells in the exponential growth phase, and 84.4% of cyanide was degraded in 66 h incubation upon addition of 3.0 mM of NaCN. The resting cells of A. vinelandii could also reduce cyanide concentration by 90.4% with 3.0 mM of NaCN in the large-scale (3 L) fermentation with the same incubation time. Finally, the optimized conditions were applied to the cassava mill wastewater bioremediation, and A. vinelandii was able to reduce the cyanide concentration by 69.7% after 66 h in the cassava mill wastewater containing 4.0 mM of NaCN in the 3 L fermenter. Related to cyanide degradation in the cassava mill wastewater, nitrogenase was the responsible enzyme, which was confirmed by methane production. These findings would be helpful to design a practical bioremediation system for the treatment of cyanide-contaminated wastewater.