• Title/Summary/Keyword: Nitrogen use

Search Result 1,209, Processing Time 0.03 seconds

Effect of EM and Amino acid Fertilizer Application on the Growth of 'Seolhyang' Strawberry Mother Plants (EM 및 아미노산액비 시용이 '설향' 딸기 모주의 생육에 미치는 영향)

  • Ann, Seoung-Won;Kim, Young-Chil;Kang, Tae-Ju;Park, Gab-Soon;Lee, Kook-Han
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.55-64
    • /
    • 2015
  • The dry weight of mother plants' leaves had the highest increase rate in both NS (single-use) and NS+EM (mixed-use) mixed with NS 0.8 (customary use). In seafood amino acid fertilizer (SAF) application, the increase rate was highest in SAF solution at a 300-fold dilution. Mother plants' crown diameter, plant height, leaf length, leaf width, petiole length and leaf number showed the greatest growth amount when NS 0.8 (customary use) was mixed to NS (single-use) or NS+EM (mixed-use) solution. The growth was highest in SAF solution diluted 300 folds, but lowest in SAF solution diluted 100 folds. Of all inorganic nutrients, excluding sulfur, total amount of nitrogen, available phosphorus, potassium, calcium and magnesium had the highest increase rate in both NS (single-use) and NS+EM (mixed-use) with the treatment of NS 0.8 (customary use). Total nitrogen, in particular, was increased by 3.1% in NS 0.4, 6.0% in NS 0.8, and 4.5% in NS 0.8 with the application of NS+EM at a 500-fold dilution compared to NS alone. Total nitrogen amount showed the highest increase rate in SAF solution diluted 300 folds. Total nitrogen, available phosphorus, calcium, magnesium and EC in soils applied with culture solutions (NS, NS+EM) had increasing tendencies after fertilizer application. The results were comparable to those of SAF treatment. The increase rate of each inorganic nutrient composition declined in soils applied with NS+EM solution diluted 500 folds compared to NS alone.

Effects of Straw Mulching and Nitrogen Fertilization on the Growth of Direct Seeded Rice in No-tillage Rice / Vetch Cropping System

  • Young-Son, Cho;Zhin-Ryong, Choe
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.97-101
    • /
    • 1999
  • No-till direct seeding cultivation of rice has major advantages such as saving of labor and cost by eliminating tillage, preparation of seed bed and trans-planting procedure compared to the conventional transplanting cultivation. A field experiment was conducted to evaluate the effects of straw treatment and nitrogen levels on the rice growth in no-till direct-seeding cultivation. Rice straw, vetch straw, and the mixture of both of the straws were mulched on the surface of soil before seeding while 4 levels of nitrogen fertilizer, 0, 7, 9, and 11 kkg/10a respectively, were applied at 3 split times, 3-weeks after sowing, 5-weeks after sowing and the panicle initiation stage. Mulching of vetch straw significantly reduced seedling establishment of rice which may be attributed to low oxidation-reduction potential of soil by vetch mulching treatment. Vetch straw increased the concentration of soil ammonium leading to an extension of the greenish leaf to panicle initiation stage. Agronomic nitrogen use efficiency (AD $E_{N}$) in heavy-mixed straw mulching plots was lower than other treatments. Grain yield and AU $E_{N}$ in the vetch treatment were less affected by fertilized N levels. Conclusively, it is suggested that heavy straw mulching was not efficient for rice seedling establishment and nitrogen usage.e.

  • PDF

Effects of Chemical Additives on Nitrogen Contents in Dairy Slurry (젖소 액상분뇨에 화학제재를 첨가 시 질소 함량에 미치는 영향)

  • Choi, In-Hak;Kim, Chang-Mann
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.811-817
    • /
    • 2009
  • To determine changes in nitrogen contents and optimal rates as N fertilizer, we investigated nitrogen characteristics in the slurry in the respond to the application of 0, 0.5, and 1 g of ferrous sulfate or alum /25g of dairy slurry. Additions of ferrous sulfate or alum increase total nitrogen, inorganic nitrogen, available nitrogen, and predicted available nitrogen contents in dairy slurry, resulting in reduction in pH. The best results were found in the treatment with 0.5 g of ferrous sulfate or alum /25 g of dairy slurry. In conclusion, the use of ferrous sulfate or alum as on-farm amendment to dairy slurry should be represented an alternative to improve N in dairy slurry.

Identification of QTLs Associated with Physiological Nitrogen Use Efficiency in Rice

  • Cho, Young-Il;Jiang, Wenzhu;Chin, Joong-Hyoun;Piao, Zhongze;Cho, Yong-Gu;McCouch, Susan R.;Koh, Hee-Jong
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.72-79
    • /
    • 2007
  • Demand for low-input sustainable crop cultivation is increasing to meet the need for environment-friendly agriculture. Consequently, developing genotypes with high nutrient use efficiency is one of the major objectives of crop breeding programs. This study was conducted to identify QTLs for traits associated with physiological nitrogen use efficiency (PNUE). A recombinant inbred population (DT-RILs) between Dasanbyeo (a tongil type rice, derived from an indica ${\times}$ japonica cross and similar to indica in its genetic make-up) and TR22183 (a Chinese japonica variety) consisting of 166 $F_8$ lines was developed and used for mapping. A frame map of 1,409 cM containing 113 SSR and 103 STS markers with an average interval of 6.5 cM between adjacent marker loci was constructed using the DT-RILs. The RILs were cultivated in ordinary-N ($N-P_2O_5-K_2O=100-80-80kg/ha$) and low-N ($N-P_2O_5-K_2O=50-80-80kg/ha$) (100 kg/ha) conditions. PNUE was positively correlated with the harvest index and grain yield in both conditions. Twenty single QTLs (S-QTLs) and 58 pairs of epistatic loci (E-QTLs) were identified for the nitrogen concentration of grain, nitrogen concentration of straw, nitrogen content of shoot, harvest index, grain yield, straw yield and PNUE in both conditions. The phenotypic variance explained by these S-QTLs and E-QTLs ranged from 11.1 to 44.3% and from 16.0% to 63.6%, respectively. The total phenotypic variance explained by all the QTLs for each trait ranged from 35.8% to 71.3%, showing that the expression of PNUE and related characters depends signify- cantly upon genetic factors. Both S-QTLs and E-QTLs may be useful for marker-assisted selection (MAS) to develop higher PNUE genotypes.

Growth Simulation of Ilpumbyeo under Korean Environment Using ORYZA2000: II Growth Simulation by New Genetic Coefficients

  • Lee Chung-Kuen;Shin Jae-Hoon;Shin Jin-Chul;Kim Duk-Su;Choi Kyung-Jin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.04a
    • /
    • pp.102-103
    • /
    • 2004
  • [ $\bigcirc$ ] In the growth simulation without changing of module with ORYZA2000, dry matter, LAI and leaf nitrogen content(FNLV) were estimated well under high nitrogen applicated condition, but overestimated under low nitrogen applicated condition. $\bigcirc$ Nitrogen stress factor on the SLA was introduced into ORYZA2000 because especially overestimated LAI under low nitrogen applicated condition was originated from SLA decrease with leaf nitrogen(FNLV) decrease. $\bigcirc$ In the growth simulation with modified SLA modified module, LAI was estimated well under even low nitrogen applicated condition, but dry matter was hardly changed compared with default. $\bigcirc$ Simulated plant nitrogen content and dry matter have no clear difference between modules, but compared with observed values, panicle weight(WSO) and rough rice yield(WRR14) were overestimated under high nitrogen applicated because of lodging, pest, disease and low nitrogen use efficiency.

  • PDF

Relationship between Vegetation Composition and Dissolved Nitrogen in Wetlands of Higashi-Hiroshima, West Japan

  • Miandoab, Azam Haidary;Nakane, Kaneyuki
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.209-223
    • /
    • 2007
  • Twenty-four wetlands located in Higashi-Hiroshima City in West Japan were selected for this study in order to investigate both the relationship between aquatic plant composition and environmental conditions; and the relationship between changing land use patterns in the catchments and the concentration of different forms of nitrogen in the wetlands. The dominant and subdominant species which comprised the principal vegetation were determined based on a vegetation census conducted in each wetland during the growing season from June to August, 2006. The seasonal variations of water quality factors (pH, electrical conductivity, turbidity, dissolved oxygen, total dissolved solid, and temperature) and different forms of nitrogen such as nitrite, nitrate, ammonium, total nitrogen, dissolved organic nitrogen and dissolved inorganic nitrogen concentrations were analyzed as important indicators of water quality for the surface water of the wetlands. The surveyed wetlands were classified into three types (non-disturbed wetlands, moderately-disturbed wetlands and highly-disturbed wetlands), based on the degree of human disturbance to their catchment areas. An analysis of variance indicated that there was a significant difference among the wetland groups in the annual mean values of electrical conductivity, total dissolved solids, total nitrogen, nitrite, dissolved inorganic nitrogen and dissolved organic nitrogen. Classification of the wetlands into three groups has revealed a pattern of changes in the composition of plant species in the wetlands and a pattern of changes in nitrogen concentrations. A majority of the non-disturbed wetlands were characterized by Brasenia schrebi and Trapa bispinosa as dominant; with Potamogeton fryeri and Iris pesudacorus as sub-dominant species. For most of the moderately-disturbed wetlands, Brasenia schrebi were shown to be a dominant species; Elocheriss kuriguwai and Phragmites australis were observed as sub-dominant species. For a majority of the highly-disturbed wetlands, Typha latifolia and T. angustifolia were observed as dominant species, and Nymphea tetragona as the sub-dominant species in the study area. An analysis of land use and water quality factors indicated that forest area played a considerable role in reducing the concentration of nutrients, and can act as a sink for surface/subsurface nutrient inputs flowing into wetland water, anchor the soil, and lower erosion rates into wetlands.

Microstructure and Properties of High Nitrogen Sintered Stainless Steel

  • Pieczonka, Tadeusz;Stoytchev, Marin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.568-569
    • /
    • 2006
  • The use of the nickel free, high nitrogen stainless steel powder and nitriding during sintering of iron based materials have been shown as an alternative way to the conventional PM stainless steels containing nickel. Nitrogen as an alloying element for iron improves in an effective way the properties of sintered alloyed steels. The powder metallurgy route is a suitable way to introduce nitrogen into these alloys and, in particular, to produce high nitrogen (close to the solubility limit) stainless steels. The paper presents and discusses the nitriding behavior of nickel-free stainless steels produced by powder metallurgy method. Alloyed melt was atomized by nitrogen and in this way nitrogen was introduced into the powder. Further nitriding occurred during sintering in a nitrogen atmosphere. For comparison, compacts having the same composition as an alloyed powder were produced from elemental powders mixture. Sintering-nitriding behaviour of investigated materials has been controlled by dilatometry, chemical and X-Ray phase analysis and metallography. Mechanical properties of sintered compacts were also measured.

  • PDF

Differences in Biogeochemical Properties and Microbial Activities in Stream Segments with Changes in Land-use Type

  • Kim, Jinhyun;Jang, Inyoung;Lee, Hyunjin;Kang, Hojeong
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.247-254
    • /
    • 2015
  • Changes in land-use type can affect soil and water properties in stream ecosystems. This study examined the effects of different land-use types on biogeochemical properties and microbial activities of a stream. We collected water and sediment samples in a stream at three different sites surrounded by varying land-use types; a forest, a radish field and a rice paddy. Nitrogen contents, such as nitrate, nitrite and total nitrogen in the stream water body, showed significant differences among the sampling sites. The highest nitrogen values were recorded at the site surrounded by cropland, as fertilizer runoff impacted the stream. Soil organic matter content in the sediment showed significant differences among sites, with the highest content exhibited at the forest mouth site. These differences might be due to the organic matter in surrounding terrestrial ecosystems. Microbial activities determined by extracellular enzyme activities showed similar values throughout all sites in the water body; however, the activities in the sediments exhibited the highest values near the forest site and mirrored the soil organic matter content values. From these results, we conclude that different land-use types are important factors affecting water and sediment properties in stream ecosystems.

Effect of Growth and Nitrogen Use Efficiency by Application of Mixed Silicate and Nitrogen Fertilizer on Zoysiagrass Cultivation (한국잔디 재배에 규산질 비료 시비가 생육과 질소이용효율에 미치는 영향)

  • Han, Jeong-Ji;Lee, Kwang-Soo;Park, Yong-Bae;Bae, Eun-Ji
    • Weed & Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.137-142
    • /
    • 2014
  • This study was conducted to investigate the effect of silicate mixed with nitrogen fertilizer on improving the growth and reducing nitrogen input of zoysiagrass. Plant height, fresh and dry weight of shoots, roots, and stolons, the number of shoots and total of stolons length were increased with highest in silicate mixed with nitrogen 24 kg/10a than nitrogen 24 kg/10a, and it showed no significance in silicate mixed with nitrogen 18 kg/10a. Nitrogen use efficiency in mixed silicate fertilizer was increased by 25-30% than single nitrogen fertilization. Moreover, the contents of available $SiO_2$, and organic matters of silicate fertilization on soil was higher than not silicate fertilization on soil. The silicate enhanced the growth and density of zoysiagrass, while it was a crucial factor to affect the chemical property of the soil.