• 제목/요약/키워드: Nitrogen use

검색결과 1,209건 처리시간 0.022초

Optimal Nitrogen Fertilizer Application Method for High Quality Bread Wheat Production

  • Han-yong Jeong;Yulim Kim;Chuloh Cho;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Jiyoung Shon
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.61-61
    • /
    • 2022
  • For high quality bread wheat production in Korea, it is necessary to develop optimal nitrogen (N) fertilizer methods. For optimal N fertilizer, we evaluated the alteration of growth, yield, yield components and end-use qualities according to the treatment of N fertilizer amounts and timings at heading stages. Growth, yield, yield components, and end-use quality weren't altered by various timings of N fertilizer treatment conditions whereas, 1,000 grain weight and lodging degree was increased by increasing amounts of N fertilizer treatment conditions at 7 days after heading (7 DAH). Especially, lodging degree was significantly increased by 6kg/10a of N fertilizer treatment conditions at 7 DAH. The flour protein contents increased by various amounts of N fertilizer treatment conditions. However, SDS-sedimentation and bread loaf volumes were decreased by exceeding 6kg/10a of N fertilizer treatment conditions at 7 DAH. When considering the quality of bread, 6kg/10a N fertilizer treatment is best, but 3kg/10a N fertilizer treatment is more suitable for both quality and lodging at 7 DAH. Therefore, it is preferable to fertilize 3kg/10a of nitrogen at 7 DAH in addition to standard fertilizer when cultivate bread wheat.

  • PDF

Effects of Nitrogen Supplementation Status on CO2 Biofixation and Biofuel Production of the Promising Microalga Chlorella sp. ABC-001

  • Cho, Jun Muk;Oh, You-Kwan;Park, Won-Kun;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1235-1243
    • /
    • 2020
  • The use of microalgal biomass as feedstock for biofuels has been discussed for decades as it provides a sustainable approach to producing fuels for the future. Nonetheless, its feasibility has not been established yet and various aspects of biomass applications such as CO2 biofixation should also be explored. Therefore, in this study, the CO2 biofixation and lipid/carbohydrate production potential of Chlorella sp. ABC-001 were examined under various nitrogen concentrations. The highest biomass productivity and CO2 biofixation rate of 0.422 g/l/d and 0.683 g/l/d, respectively, were achieved under a nitrogen-rich condition (15 mM nitrate). Carbohydrate content was generally proportional to initial nitrate concentration and showed the highest value of 41.5% with 15 mM. However, lipid content showed an inverse relationship with nitrogen supplementation and showed the highest value of 47.4% with 2.5 mM. In consideration as feedstock for biofuels (bioethanol, biodiesel, and biogas), the sum of carbohydrate and lipid contents were examined and the highest value of 79.6% was achieved under low nitrogen condition (2.5 mM). For lipid-based biofuel production, low nitrogen supplementation should be pursued. However, considering the lower feasibility of biodiesel, pursuing CO2 biofixation and the production of carbohydrate-based fuels under nitrogen-rich condition might be more rational. Thus, nitrogen status as a cultivation strategy must be optimized according to the objective, and this was confirmed with the promising alga Chlorella sp. ABC-001.

제주지역에서 질소시비량 차이에 따른 양마의 생육특성, 수량 및 조성분 변화 (Effect of Nitrogen Rate on Agronomic characteristics, Forage Yield and Chemical Composition of Kenaf on Jeju Island)

  • 조남기;송창길;조영일;고지병
    • 한국초지조사료학회지
    • /
    • 제21권2호
    • /
    • pp.59-66
    • /
    • 2001
  • In order to determine the influence of nitrogen on agronomic characters, forage yield and quality, a Kenaf was cultured on the volcanic ash soil at the Experimental Farm of Cheju national University under the seven levels of nitrogen rates(0, 50, 100, 150, 200, 250kg/ha) from April 25 to Dec. 25, 1999. The plant height increased by increase of nitrogen rate, showing longest 250kg/ha with 286.6cm and shortest at no application plot with 255.7cm. The difference on leaf number, leaf withering number, stem diameter and branches number by nitrogen rate showed a similar tendency to the plant height. Increasing N rate from 0 to 250kg/ha fresh forage yield form 55.8 to 99.8MT/ha, dry matter (DM) yield from 8.8 to 15.8MT/ha, crude protein(CP) yield form 1.2 to 3.1MT/ha, total digestible nutrients (TDN) yield from 3.8 to 8.6MT/ha. However, no significant differences in these yields were found between 200 and 250kg N/ha. Nitrogen uptake increased form 192.9 to 496.2 kg/ha but N use efficiency decreased form 95.0 to 66.6 kg DM$^{a}$ /kg N with increasing from 0 to 250 kg/ha. As N rate increased from 0 to 250kg/ha, leaf and stem out of CP, crude fat (CF), nitrogen free extract (NFE), TDN contents increased from 20.1% to 25.8% and from 9.7% to 12.4%, from 5.6% to 8.1% and from 3.3% to 4.4%, from 36.1% to 40.2% and from 21.9% to 32.4%, from 59.3% to 75.0% and from 32.2% to 38.2%, respectively, while leaf and stem out of crude fiber decreased from 18.5% to 16.7% and from 51.5% to 39.3%. Based on the these findings, the optimum N rate for forage production of kenaf seems to be about 200 kg/ha in atmospheric phenomena and volcanic ash soils of jeju island.

  • PDF

상향류식 혐기성조, 무산소조 및 수차호기조를 이용한 하수처리시 수리학적 체류시간의 변화와 메디아 충진이 질소 및 인 제거에 미치는 영향 (The Effects of Changing of Hydraulic Retention Time and Charging Media on the Removal of Nitrogen and Phosphorus in the Up-flow Anaerobic/Anoxic Reactor and Water-mill for Sewage Treatment)

  • 신명철;이영신
    • 한국환경보건학회지
    • /
    • 제35권1호
    • /
    • pp.64-70
    • /
    • 2009
  • The aims of this study is to examine the effects of the changes in HRT(Hydraulic Retention Time) and media charge in a water-mill, among other operation factors, on the nitrogen and phosphorus removal in order to use up-flow anaerobic reactors, anoxic reactors and water-mill aerobic reactors for sewage treatment. The extension of HRT improved the nitrogen removal efficiency, however the removal pattern was constant regardless of HRT. The removal of phosphorus was constant (80%-90%) regardless of the change in HRT. The removal rate with change in influx load varied such that at the OLR (Organic Load Rate) of 1-3 kg/d, the T-N removal efficiency was 80.7%-88.9% and the T-P removal efficiency was 82.9%-89.3% while at the NLR (Nitrogen Loading Rate) of 0.108-0.156 kg/d the removal efficiencies were 80.7-88.9% (T-N) and 82.9-89.3% (T-P). The analyses of the nitrogen and phosphorous removal characteristics with the C/N and C/P ratio showed that the mean T-N removal rate was 88% at the C/N ratio of 1.2-2.6, and that the mean T-P removal rate was 86% at the C/P ratio of 7.2-14.1. Also, the analysis of nitrogen and phosphorous removal characteristics were analyzed in relation to media charge. The comparison between with and without media charge in the water-mill showed that while the nitrogen removal efficiencies were 86-94% and 85-89% respectively, the difference of phosphorous removal efficiencies were between the two conditions was not significant, thus it suggested that the media charge has less effect on the removal efficiency of phosphorous compared to that of nitrogen.

상추재배를 위한 시설하우스 배액의 비효평가 - 무기태 질소를 중심으로 - (Analysis of the Fertilizing Effects of Hydroponic Waste Solution on Lettuce (Lactuca sativa var. captitata) Cultivation - Based on Inorganic Nitrogen Content -)

  • 윤성욱;임주미;문종필;장재경;박민정;손진관;이현호;서효민;최덕규
    • 한국농공학회논문집
    • /
    • 제63권4호
    • /
    • pp.13-21
    • /
    • 2021
  • The feasibility of HWS for agricultural use was analyzed through a crop cultivation test to utilize the hydroponic waste solution (HWS) generated from the nutriculture greenhouse. The fertilizing effect of HWS was assessed on the basis of the inorganic nitrogen (N) mostly existed in HWSs, and nitrogen (urea) fertilizer. Lettuce was selected as the target crop influenced by the soil treatment and also for the crop cultivation test. Thus, the change in growth characteristics of lettuce and that in chemical characteristics of the soil were investigated. In terms of the growth of lettuce, the C control group with 70% nitrogen (urea) fertilizer and 30% HWS and the D control group with 50% nitrogen (urea) fertilizer and 50% HWS were more effective than the practice control group (B) with 100% nitrogen (urea) fertilizer. The results of this study confirmed the combined applicability of the chemical fertilizer and HWS for crop cultivation. Because NO3-N present in HWS has a high possibility of leaching into the soil, its applicability as a fertilizer has been considered to be relatively low in Korea. However, if an appropriate mixing ratio of urea fertilizer and HWS could be applied, the problems associated with leaching of nitrate nitrogen could be reduced with beneficial effects on crop cultivation. Thus, future studies are required on the treatment effect of HWS with repeated cultivation, impact assessment on the surrounding environment, and appropriate fertilization methods using nitrogen (urea) fertilizer and HWS. These studies would facilitate the sustainable recycling of HWS.

전도성 광촉매를 이용한 콘크리트 블록의 대기중 질소산화물 저감에 관한 연구 (Improvement of Nitrogen Oxide Removal of Concrete Sidewalk Block Using by Conductive Photocatalyst)

  • 배근국;조인숙;안용식
    • 한국건설순환자원학회논문집
    • /
    • 제11권4호
    • /
    • pp.493-500
    • /
    • 2023
  • 본 연구에서는 전도성 재료를 혼입한 광촉매 보도블록을 제조하여 질소산화물 제거율에 미치는 영향을 살펴보고 내구성이 향상된 블록을 제조하고자 하였다. 광촉매와 전도성 재료인 활성탄소를 혼입시 광촉매 효율이 향상되었으며 전도성 광촉매 콘크리트 블록의 경우 광촉매 콘크리트 블록보다 질소산화물 제거율이 2.5배 정도 향상되었다. 전도성 광촉매 시험편의 질소산화물 제거율이 높게 나타난 것은 전도성 재료인 활성탄소의 영향으로 TiO2 광분해로 인한 광전류가 많이 발생한 영향으로 볼 수 있으며 광촉매 시험편과 전도성 광촉매 시험편의 질소산화물 제거율 실험결과와 광전류 시험결과를 비교 분석하였다.

Caffeine as a source for nitrogen doped graphene, and its functionalization with silver nanowires in-situ

  • Ramirez-Gonzalez, Daniel;Cruz-Rivera, Jose de J.;Tiznado, Hugo;Rodriguez, Angel G.;Guillen-Escamilla, Ivan;Zamudio-Ojeda, Adalberto
    • Advances in nano research
    • /
    • 제9권1호
    • /
    • pp.25-32
    • /
    • 2020
  • In this work, we report the use of caffeine as an alternative source of nitrogen to successfully dope graphene (quaternary 400.6 eV and pyridinic at 398 eV according XPS), as well as the growth of silver nanowires (in-situ) in the surface of nitrogen doped graphene (NG) sheets. We used the improved graphene oxide method (IGO), chemical reduction of graphene oxide (GOx), and impregnation with caffeine as source of nitrogen for doping and subsequently, silver nanowires (NW) grow in the surface by the reduction of silver salts in the presence of NG, achieving a numerous of growth of NW in the graphene sheets. As supporting experimental evidence, the samples were analyzed using conventional characterization techniques: SEM-EDX, XRD, FT-IR, micro RAMAN, TEM, and XPS.

Candida magnoliae에 의한 에리스리톨 생산을 위한 최적 배양환경과 질소원 선별 (Optmization of Culture Conditions and Nitrogen Sources for Production of Erythritol by Candida magnoliae.)

  • 고은성;문관훈;한기철;유연우;서진호
    • 한국미생물·생명공학회지
    • /
    • 제28권6호
    • /
    • pp.349-354
    • /
    • 2000
  • Culture conditions and nitrogen sources were optimized for production of erythritol, a natural sweetener, by Candida magnoliae M26. The optimal culture conditions were found to be culture temperature of $28^{\circ}C$, initial pH of 7, aeration of 1 vvm and agitation speed of 500 rpm in a 2.5 1 jar-fermentor. Glucose was chosen as the best carbon cource bsed on cell growth and erythritol productivity. Kight steep water(LSW) and corn steep liquor (CSL) which are by-products in starch processing from corn were tested as a nitrogen source substitute for yeast extract. The use of either LSW or CSL did not change the fermentation performance. The experimental results using LSW and CSL showed 1.5 times higher in cell growth and almost the same value in erythritol productivity com-pared with the control fermentation using yeast extract as a nitrogen source. These results suggested that either LSW of CSL could be used as a nitrogen source in a large-scale fermentation for erythritol production.

  • PDF

5톤/일 규모 SRF 전용 연소보일러에서의 질소산화물의 생성과 저감에 대한 연구 (A Study on the Formation and Reduction of NOx in 5TPD SRF Boiler)

  • 윤영식;박동규;구재회;박영수;서용칠
    • 한국폐기물자원순환학회지
    • /
    • 제35권7호
    • /
    • pp.647-652
    • /
    • 2018
  • The emission of nitrogen oxides has a great environmental impact. It leads to Los Angeles type smog, and it recently has attracted attention as a source of ultrafine dust. The main sources of nitrogen oxides are internal combustion engines and industrial boilers. These emission sources are processes that are essential for human industrial activities, so the regulation of original use is impossible. Therefore, special control methods should be applied to reduce NOx emissions into the atmosphere. In this study, we investigated how the supply of ER and urea influences the removal of nitrogen oxides from SRF combustion boilers. Experimental results show that the removal efficiency of nitrogen oxides can be up to 80% under the conditions of ER 2.0 and a urea feed of 0.5 LPM.

돈분 액비의 아산화질소 발생 저감 효과 검정 (Verification of the Effect of Liquefied Pig Manure on Reducing Nitrous Oxide Generation)

  • 이평호;백지현;구연종
    • 한국환경농학회지
    • /
    • 제42권4호
    • /
    • pp.418-426
    • /
    • 2023
  • This study focused on nitrous oxide, a major greenhouse gas produced in agricultural settings through bacterial nitrogen oxidation in aerobic soil. Nitrogen fertilizer in farmland is identified as a primary source of nitrous oxide. The importance of reducing excess nitrogen in soil to mitigate nitrous oxide production is well-known. The study investigated the use of liquefied pig manure as an alternative to urea fertilizer in conventional agriculture. Results showed a more than two-fold reduction in nitrous oxide emissions in pepper cultivation areas with liquefied pig manure compared to that with urea fertilizer. The population of Nitrosospira, a nitrous oxide-producing bacterium, decreased by over 10% with liquefied pig manure. Additionally, nirK and nosZ, which are related to the denitrification process, significantly increased in the urea fertilizer group, whereas levels in the liquefied pig manure group resembled those with no nitrogen treatment. In conclusion, the experiment confirmed that liquefied pig manure can serve as an eco-friendly nitrogen fertilizer, significantly reducing nitrous oxide production, a major contributor to the atmospheric greenhouse effect.