• Title/Summary/Keyword: Nitrogen partitioning

Search Result 34, Processing Time 0.023 seconds

Effect of Defruiting on Nitrogen Partitioning, Accumulation, and Remobilization of Young Trees in 'Fuyu' Persimmon (과실 제거가 '부유' 단감 유목의 질소화합물 분배와 축적 및 재이용에 미치는 영향)

  • Park, Soo-Jeong
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.306-310
    • /
    • 2011
  • This study examined the changes in the distribution of nitrogenous compounds in various parts of 3- and 4-year-old persimmon (Diospyros kaki cv. Fuyu) with fruits (fruited) and without fruits (defruited). The effect of the changes was then related to the storage and their reutilization for new growth in the following year. From June 15 to November 1, the partitioning of amino acids among perennial parts of fruited trees was inconsistent, whereas that of defruited trees was characterized by a significant increase. Compared with the fruited trees, amino acids accumulated in the perennial parts of defruited trees were 1.66 g and 3.48 g more in 3- and 4-year-old trees, respectively. Of the total proteins increased during this period, the proportions distributed to the perennial parts of the tree were less than 50% for fruited trees, but they were more than 90% for defruited trees. Roots were the strongest sink for proteins; percent proteins in the roots amounted to 94 in defruited 3-year-old trees and 76 in 4-year-old trees. Compared with the proteins accumulated in perennial parts of fruited trees, those of defruited trees were 1.64 g more in 3-year-old and 2.58 g more in 4-year-old trees. During this period, the nitrogenous compounds decreased by 0.50-0.56 g in the leaves of fruited trees, while they increased by 0.66-0.78 g in their fruits. During the new growth from April 10 to June 10 of the following year, amino acids decreased both in the fruited and defruited trees. Proteins, especially in the root, decreased in the trees that had been previously defruited. More amino acids and proteins were found in the newly grown parts of the defruited trees. Compared with the fruited trees, the defruited trees accumulated nitrogenous compounds more in roots than in the other parts of the perennial parts. The reserve nitrogenous compounds contributed to the new shoot growth and fruit set in the following year.

Canola oil is an excellent vehicle for eliminating pesticide residues in aqueous ginseng extract

  • Cha, Kyu-Min;Lee, Eun-Sil;Kim, Il-Woung;Cho, Hyun-Ki;Ryu, Ji-Hoon;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.292-299
    • /
    • 2016
  • Background: We previously reported that two-phase partition chromatography between ginseng water extract and soybean oil efficiently eliminated pesticide residues. However, an undesirable odor and an unpalatable taste unique to soybean oil were two major disadvantages of the method. This study was carried out to find an alternative vegetable oil that is cost effective, labor effective, and efficient without leaving an undesirable taste and smell. Methods: We employed six vegetable oils that were available at a grocery store. A 1-mL sample of the corresponding oil containing a total of 32 pesticides, representing four categories, was mixed with 10% aqueous ginseng extract (20 mL) and equivalent vegetable oil (7 mL) in Falcon tubes. The final concentration of the pesticides in the mixture (28 mL) was adjusted to approximately 2 ppm. In addition, pesticides for spiking were clustered depending on the analytical equipment (GC/HPLC), detection mode (electron capture detector/nitrogen-phosphorus detector), or retention time used. Samples were harvested and subjected to quantitative analysis of the pesticides. Results: Soybean oil demonstrated the highest efficiency in partitioning pesticide residues in the ginseng extract to the oil phase. However, canola oil gave the best result in an organoleptic test due to the lack of undesirable odor and unpalatable taste. Furthermore, the qualitative and quantitative changes of ginsenosides evaluated by TLC and HPLC, respectively, revealed no notable change before or after canola oil treatment. Conclusion: We suggest that canola oil is an excellent vehicle with respect to its organoleptic property, cost-effectiveness and efficiency of eliminating pesticide residues in ginseng extract.

Fruit and vegetable discards preserved with sodium metabisulfite as a high-moisture ingredient in total mixed ration for ruminants: effect on in vitro ruminal fermentation and in vivo metabolism

  • Ahmadi, Farhad;Lee, Won Hee;Oh, Young-Kyoon;Park, Keunkyu;Kwak, Wan Sup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.446-455
    • /
    • 2020
  • Objective: Our recent series of laboratory- and large-scale experiments confirmed that under aerobic and anaerobic conditions, sodium metabisulfite (SMB) was effective in preserving nutrients and antioxidant capacity of highly perishable fruit and vegetable discards (FVD). Hence, the purpose of this study was to examine how partial inclusion of SMB-treated FVD in total mixed ration (TMR) influences in vitro ruminal fermentation, whole-tract digestibility, nitrogen metabolism, blood metabolites, and voluntary feed intake of sheep. Methods: The FVD were mixed thoroughly with 6 g SMB/kg wet biomass and kept outdoors under aerobic conditions for 7 days. Four TMRs including four levels of SMB-treated FVD (as-fed basis) at 0%, 10%, 20%, and 30% (equaling to 0%, 1.9%, 3.8%, and 5.7% on dry matter basis, respectively), were prepared as replacement for corn grain. The ruminal fermentation metabolites were studied using an in vitro gas production test. Four mature male Corriedale sheep were assigned at random to the 4 diets for two separate sub-experiments; i) digestibility trial with four 21-d periods, and ii) voluntary feed intake trial with four 28-d periods. Results: Inclusion of SMB-treated FVD in the TMR tended to quadratically increase partitioning factor. No effect was seen on total-tract digestibility of organic matter, ether extract, crude protein, and acid detergent fiber, except for neutral detergent fiber digestibility that tended to linearly increase with increasing SMB-treated FVD in the TMR. The progressive increase of FVD preserved with SMB in the diet had no effect on nitrogen metabolism. Treatment had no effect on serum antioxidant capacity and blood metabolites assayed. Voluntary feed intake was not impaired by inclusion of SMB-treated FVD in the TMR. Conclusion: It appears that FVD preserved with SMB can be safely incorporated into TMR as replacement of corn grain without impairment of nutrient metabolism and feed intake.

Uptake, Assimilation and Translocation of Ammonium or Nitrate in Italian Ryegrass

  • Kim, Tae-Hwan;Lee, Bok-Rye;Jung, Woo-Jin;Kim, Dae-Hyun;Chung, Soon-Ju;Kim, Kil-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.303-308
    • /
    • 2001
  • To investigate the partitioning of newly absorbed N derived from NO$_3$- and NH$_4$$^{+}$, 6 mM $K^{15}$ NO$_3$ or 3 mM ($^{15}$ NH$_4$)$_2$ was fed continuously in Italian ryegrass (Lolium multiflrum L.) for 7 days. Nitrogen metabolites (nitrate, amino acid, soluble- and insoluble protein) were analyzed at the end of $^{15}$ N feeding. Dry weight in shoot, stubble and root was not significantly different between NO$_3$$^{[-10]}$ and NH$_4$$^{+}$ feeding. Total nitrogen content in all three organs was significantly higher in NH$_4$$^{+}$ than NO$_3$$^{[-10]}$ feeding. Sum on N content in reduced N fractions (amino acids + proteins) in shoot, stubble and roots in NH$_4$$^{+}$ feeding increased by 13.3, 12.5 and 35.4 %, respectively, compared to NO$_3$$^{[-10]}$ feeding. The Relative Specific Activity (RSA, percentage of newly absorbed $^{15}$ N relative to total N in a sample) values of amino acids and insoluble proteins were significantly higher in NH$_4$$^{+}$ feeding. Total amount of newly absorbed $^{15}$ N in NO$_3$$^{[-10]}$ and NO$_3$$^{[-10]}$ feeding was 52.3 and 69.5 mg/plant on dry matter basis, respectively. In both NH$_4$$^{+}$ and NO$_3$$^{[-10]}$ grown plants, most of the N was allocated to the shoot, 67.5% in NH$_4$$^{+}$ feeding and 58.8% NO$_3$$^{[-10]}$ feeding, respectively. The $^{15}$ N amount incorporated in the reduced N compounds (amino acids and proteins) in NH$_4$$^{+}$ grown plants significantly increased by 74.8% compared to NO$_3$$^{[-10]}$ grown plants. The increase of the $^{15}$ N amount assimilated to amino acids in NH$_4$$^{+}$ grown plants was remarkably higher in roots as more than 7.25 times compared to NO$_3$$^{[-10]}$ feeding. These results indicated that Italian ryegrass was much efficiently utilized NH$_4$$^{+}$-N for the synthesis of reduced N compounds.reduced N compounds.

  • PDF

Dry Weight and Nitrogen Contents in Different Parts of 'Fuyu' Persimmon as Affected by Application Timing and Methods of Supplemental Nitrogen (질소 추비 시기와 방법이 '부유' 단감나무의 건물중과 질소함량 및 수체 부위별 분포에 미치는 영향)

  • Park, Doo-Sang;Choi, Seong-Tae;Kang, Seong-Mo
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.728-734
    • /
    • 2010
  • We studied the accumulation and partitioning of dry weight (DW) and nitrogen (N) in different parts of field-grown 'Fuyu' persimmon to elucidate that the foliar applications of supplemental N in June or September compared favorably with the traditional soil application in securing leaf area and fruit production. We also estimated the proportion of N permanently removed from the tree at the end of a growing season. Urea was applied either to leaves in June and/or September or to the soil in June and September for three consecutive years, and the trees were excavated in November for analyses. Total DW ranged from 4.2-4.8, 8.7-9.2, and 17.1-21.5 kg in a 4-, 5-, and 6-year-old tree, respectively, without statistical difference among the four treatments. Of the total DW, 3.3-10.2% was in shoots, 5.7-10.5% in leaves, 8.3-31.4% in aerial woods, 13.0-27.0% in root, and 28.0-59.3% in fruits. As the trees became more productive, DW proportion of fruits significantly affected that of the root: in 6-year-old trees, root DW accounted for only 10.6-15.8% of the tree total when fruit DW accounted for 50-60%. N contents ranged from 24.6-28.3, 48.3-53.5, and 98.3-122.6 g in a 4-, 5-, and 6-year-old trees, respectively, without statistical difference among the treatments. Of the total N, 6.2-11.5% was in shoots, 16.7-24.3% in leaves, 17.6-23.5% in aerial woods, 17.2-37.5% in roots, and 16.9-34.4% in fruits. As in DW, the increase in the proportion of N in fruits decreased in the root most significantly. Application methods for supplemental N did not affect the proportion of DW and N removed from the tree through abscising leaves and harvested fruits. Percentage of DW removal was 41 in 4- and 5-year-old trees, but it was 61 in more productive 6-year-old trees; that of N was 39, 43, and 49%, respectively. No significant changes in the contents of DW and N in field-grown trees, as well as their percentages removed from the tree at the end of the season, demonstrated that foliar application of supplemental N was as good as soil applications with much less N.

Morphological and Photosynthetic Responses of Rice to Low Radiation (일사 저하에 대한 벼의 형태적 특성 및 광합성 반응 변화)

  • Yang, Woon-Ho;Peng, Shaobing;Dionisio-Sese Maribel L.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • Light is an environmental component inevitably regulating photosynthesis and photo-morphogenesis, which are involved in the plant growth and development. Studies were conducted at the International Rice Research Institute, Philippines in 2004 and 2005, with aims to investigate 1) morphological responses of rice plants to low radiation, 2) morphological alteration of shade-grown plants when exposed to high light intensity, and 3) photosynthetic responses of shade-grown rice plants. Reduction in solar radiation by 40% induced increases in the area on a single leaf basis, biomass partitioning to leaves, and chlorophyll meter readings but brought about retardation of tiller development and decrease in above-ground biomass production of rice varieties. When the shade-grown plants from two weeks of transplanting to panicle initiation were exposed to full solar radiation after panicle initiation, they demonstrated less increase in chlorophyll meter readings and more decrease in leaf nitrogen concentrations from panicle initiation to flowering than control plants that were grown under the ambient solar radiation for whole growth period after transplanting. Shade-grown rice plants exhibited lower carbon assimilation rates but higher internal $CO_2$ concentrations on a single leaf basis than control plants, when measurements for shade-grown rice plants were made under the shading treatments. But when the measurements for shade-grown plants were made under the full solar radiation, light-saturated carbon assimilation rates were similar to control plants. Response of photosynthetic rates to varying light intensities was not considerably different between shading treatments and control. Yield reduction was observed in the shading treatments from panicle initiation to flowering and from flowering to physiological maturity, mainly by less spikelets per panicle and poor grain filling, respectively.

Heavy Metals in Surface Sediments from Doam Bay, Southwestern Coast of Korea (한국 남서해안 도암만 표층퇴적물의 중금속 함량 및 분포 특성)

  • CHO, HYEONG-CHAN;CHO, YEONG-GIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.159-168
    • /
    • 2015
  • Forty-four surface sediments from Doam Bay were analyzed for total organic carbon (TOC), total nitrogen (TN), total metal (Al, Fe, Mn, Cr, Cu, Ni, Pb, Zn) and further chemical partitioning of metals were carried out in some samples. The TOC (0.32~3.10%) and TN (0.03~0.26%) values of the samples were similar to those of other coastal area. The C/N ratios ranged from 7.9 to 11.9 with an average 9.3 which revealed that contribution of terrestrial organic matters was relatively rare. Contents of analysed metals showed a level lower than threshold effects level (TEL) in sediment quality guidelines. Based on the chemical speciation of metals, the lattice fractions were found in the order Cr > Cu > Ni > Zn > Pb > Mn, while Mn and Pb are the ratio of the non-lattice fractions accounted for more than 50%. The average baseline values were obtained relative cumulative frequency curves and linear regression analysis. The respective baseline concentrations for Cu, Ni, Pb, Zn, Cr and Mn were 11.8, 23.1, 26.8, 76.6, 56.7, 585 mg/kg, respectively. Based on geoaccumulation index ($I_{geo}$) with a baseline values of Mn showed that face the contamination phase from estuarine stations. However, in case of Zn and Pb, although there is no sign of contamination, it could be release from sediment when there is a change in the environment, which is caused from the high ratio of non-lattice fractions.

Rational budgeting approach as a nutrient management tool for mixed crop-swine farms in Korea

  • Reza, Arif;Shim, Soomin;Kim, Seungsoo;Ahn, Sungil;Won, Seunggun;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1520-1532
    • /
    • 2020
  • Objective: Due to rapid economic return, mixed crop-swine farming systems in Korea have become more intensive. Intensive farming practices often cause nutrient surpluses and lead to environmental pollution. Nutrient budgets can be used to evaluate the environmental impact and as a regulatory policy instrument for nutrient management. This study was conducted to select a nutrient budgeting approach applicable to the mixed crop-swine farms in Korea and suggest an effective manure treatment method to reduce on-farm nutrient production. Methods: In this study, we compared current and ideal gross nutrient balance (GNB) approaches of Organisation for Economic Co-operation and Development and soil system budget (SSB) approach with reference to on-farm manure treatment processes. Data obtained from farm census and published literature were used to develop the farm nutrient budgets. Results: The average nitrogen (N) and phosphorus (P) surpluses were approximately 11 times and over 7 times respectively higher in the GNB approaches than the SSB. After solid-liquid separation of manure, during liquid composting a change in aeration method from intermittent to continuous reduced the N and P loading about 50% and 47%, respectively. Although changing in solid composting method from turning only to turning+aeration improved the N removal efficiency by 30.5%, not much improvement in P removal efficiency was observed. Conclusion: Although the GNB approaches depict the impact of nutrients produced in the mixed crop-swine farms on the overall agricultural environment, the SSB approach shows the partitioning among different nutrient loss pathways and storage of nutrients within the soil system; thus, can help design sustainable nutrient management plans for the mixed cropswine farms. The study also suggests that continuous aeration for liquid composting and turning+aeration for solid composting can reduce nutrient loading to the soil.

Effects of Chronic Inflammation on Energy Metabolism and Growth Performance in Weanling Piglets

  • Moon, H.K.;Han, In K.;Gentry, J.L.;Parmentier, H.K.;Schrama, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.2
    • /
    • pp.174-179
    • /
    • 1999
  • The effect of a chronic inflammation (cell-mediated immune response) on energy metabolism and growth performance was assessed in weanling piglets. Twenty four barrows of 4 wk of age were assigned to one of two immunization treatments : Control group [CON: immunized with Incomplete Freund's Adjuvant (lFA)] or Immunization group [IMMU: immunized with Complete Freund's Adjuvant (CFA)]. On d0, piglets were weaned and subcutaneously immunized at the medial side of the femur with 2 ml of IFA or CFA, respectively. Energy and nitrogen balances were measured per group during 13-d balance period, and total $(HP_{tot})$, activity-related ($(HP_{act})$) and non-activity-related $(HP_{cor})$ heat production were determined every 9-min by indirect calorimetry. Ig total titers to Mycobacterium butyricum, which is present in CFA, were higher (p<0.01) in IMMU than in CON on d13 (2.5 vs 1.8) and d20 (2.9 vs 1.8) after immunization. There were no differences (p>0.10) between treatments in rectal temperature, performance, feed intake, and availability and partitioning of energy during the balance period. Average daily feed intake was numerically higher in IMMU than in CON (0.34 vs 0.32 kg/d), but there was no difference (p>0.10) in metabolizability of the dietary energy between treatments. $HP_{act}/HP_{tot}$ was 16.24 and 16.89%, and retained energy was 251 and 268 $268\;kJ{\cdot}kg^{0.75}{\cdot}d^{-1}$ for CON and IMMU, respectively. Numerically, maintenance requirement of IMMU was even lower than that of CON $(419\;vs\;427\;kJ{\cdot}kg^{0.75}{\cdot}d^{-1})$. The present study suggests that a chronic inflammation has no effect on energy metabolism and growth performance, in spite of the difference in systemic antibody responses. The reason was considered to be due to locally induced immune response, resulting from the possible encapsulation at the site of injection, and/or to a low systemic immune stress which is within a functionally acceptable physiological range for the piglets.

Effect of Ensilage of Rye Treated with Formic Acid and Lactic Acid Bacteria Inoculant on Ruminal Fermentation Characteristics (개미산과 유산균제 첨가 베일 사일리지의 발효 차이가 반추위 발효 특성에 미치는 영향)

  • Kim, Jayeon;Bharanidharan, Rajaraman;Bang, Geumhwi;Jeong, Soonwoo;Park, Seol Hwa;Oh, Young Kyoon;Kim, Jong Geun;Kim, Kyoung Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.244-250
    • /
    • 2020
  • This study investigated the effects of silage additives on rumen fermentation characteristics of rye silage. Rye was harvested at ripening stage and treated with different additives in quadruplicate following: without additive (control), with either lactic acid bacteria inoculant (LAB), formic acid (FA), or Ca-formate (Ca-FA). Overall, ensiling characteristics of FA and Ca-FA silages contained 4-fold more (P<0.05) butyrate and 2-fold more (P<0.05) NH3-N concentration (% total nitrogen) than those of control and LAB silages. Cows fed LAB silage showed a diurnal trend with the highest values of propionate concentration compared to the control at 1, 2 and 3 hr after feeding. In contrast, FA and Ca-FA silages increased the proportion of butyrate significantly (P<0.05) at all sampling times compared to control and LAB silage. In conclusion, Forage rye treated with FA or Ca-FA showed different fermentation characteristics during ensilage and in the rumen compared to LAB silage. Further studies are needed to evaluate whether different fermentation characteristics in the rumen between LAB and FA silages had effect on partitioning of nutrients between milk production and body tissue.