• Title/Summary/Keyword: Nitrogen oxidizing

Search Result 92, Processing Time 0.024 seconds

Seasonal Changes of Microflora in Paddy Soil with Long-term Application of Organic Matter (유기물(有機物) 연용답토양(連用畓土壤)에 있어서 미생물상(微生物相)의 계절적(季節的) 변화(變化))

  • Lee, Sang-Bok;Choi, Yoon-Hee;Lee, Kyung-Bo;Yoo, Chul-Hyun;Rhee, Gyeong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 1995
  • This experiment was carried out to investigate the effects on the seasonal population change of microflora of long-term application of organic matters in Fluvio-Alluvial plain of Jeonbug series. As organic matters, rice straw and compost of 5 and 10ton/ha, which were applied with the different nitrogen fertilizer level of 0, 150kg/ha into the soil 15cm deep, respectively. A number of total aerobic bacteria were gradually increased from just after water-logging before rice transplanting to pancle formations stage, afterthat decreased at harvest. The other side, a number of actinomycetes, fungi and cellulose-decomposers were slightly fluctuated until panicle formation stage and increased at havesting stage. In general, microorganism numbers were higher in organic matter with long-term nitrogen fertilizer applied plot, while cellulose-decomposers were higher in only organic matter applied plot. The microorganisms of ammonia-oxidizing, nitrate-reducing and nitrite-oxidizing, and denitrifying bacteria showed the maximum number at harvest stage, at panicle formation stage and at early tillering stage, respectively, while that of ammonifying bacteria were variable if nitrogen fertilizer applied or not at the respective periods in nitrogen cycle under water-logging. These bacteria were numerous in the organic matter plots combined with nitrogen fertilizer, especially, denitrifying bacteria in rice straw, others no difference.

  • PDF

Respiration, $alpha-Naphthylamine$ Oxidizing Ability and TTC Reducing Ability of Roots and Uptake of Water and Nutrients and Bleeding as Affected by the Level of Nitrogen and Phosphorous Application Shading, Water Potential and Temperature in the Rice Plants (벼 뿌리의 호흡, $\alpha-Naphthylamine$, 산화력, TTC 환원력, 양수분 흡수 및 일필에 대한 질소 및 인산시용량, 차광, 수분 Potential 및 온도처리의 영향)

  • Kwon Yong Woong;Na Ae Sil;Lee Min Kyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1988.07a
    • /
    • pp.16-17
    • /
    • 1988
  • PDF

Steam Activation Behaviors of Oxidatively Stabilized Petroleum-based Pitch Fibers Spun by Melt-blown Method

  • Kim, Chan;Kim, Young-Min;Yang, Kap-Seung
    • Carbon letters
    • /
    • v.3 no.2
    • /
    • pp.93-98
    • /
    • 2002
  • Short pitch fibers were prepared from petroleum based isotropic precursor pitch by melt-blown technology. The pitch fibers were stabilized in oxidizing condition, followed by steam activations at various conditions. The fiber surface and pore structures of the activated carbon fibers (ACFs) were respectively characterized by using SEM and applying BET theory from nitrogen adsorption at 77 K. The weight loss of the oxidized fiber was proportional to activation temperature and activation time, independently. The adsorption isotherms of the nitrogen on the ACFs were constructed and analyzed to be as Type I consisting of micropores mainly. The specific surface area of the ACFs proportionally increased with the weight loss at a given activation temperature. The specific surface area was ranged 850~1900 $m^2/g$ with pores of narrow distribution in sizes. The average pore size was ranged 5.8~14.1 ${\AA}$ with the larger value from the more severe activation condition.

  • PDF

Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting

  • Wang, Tingting;Cheng, Lijun;Zhang, Wenhao;Xu, Xiuhong;Meng, Qingxin;Sun, Xuewei;Liu, Huajing;Li, Hongtao;Sun, Yu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1288-1299
    • /
    • 2017
  • Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene (hzo) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between $2.13{\times}10^5$ and $1.15{\times}10^6$ 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

Impact of Temperature and Alkalinity on Nitrogen Removal in the Start-up Period of Partial Nitrification in a Sequence Batch Reactor

  • Nguyen Van Tuyen;Tran Hung Thuan;Chu Xuan, Quang;Nhat Minh Dang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.541-547
    • /
    • 2023
  • The effect of temperature and influent alkalinity/ammonia (K/A) ratio on the start-up of the partial nitrification (PN) process for an activated sludge-based domestic wastewater treatment was studied. Two different sequence batch reactors (SBR) were operated at 26 ℃ and 32 ℃. The relationship between temperature and the concentration of free ammonia (FA) and free acid nitrite (FNA) was investigated. A stable PN process was achieved in the 32 ℃ reactor when the influent ammonium concentration was lower than 150 mg-N/L. In contrast, the PN process in the 26 ℃ reactor had a higher nitrite accumulation rate (NAR) and ammonium removal efficiency (ARE) when the influent ammonia concentration was increased to more than 150 mg-N/L. Then three different ranges of the K/A ratio were applied to an SBR reactor. In the K/A range of 2.48~1.65, the SBR reactor achieved the highest NAR ratio (75.78%). This ratio helps to achieve the appropriate level of alkalinity to maintain a stable pH and provide a sufficient amount of inorganic carbon source for the activity of microorganisms. At the same time, FA and FNA values also reached the threshold to inhibit nitrite-oxidizing bacteria (NOB) without a significant effect on ammonia-oxidizing bacteria (AOB). Results showed that the control of temperature and K/A ratio during the start-up period may be important in establishing a stable and steady PN process for the treatment of domestic wastewater.

Isolation and Characterization of Ammonia and Nitrite Nitrogen Oxidizing Strains (암모니아 및 아질산성 질소 산화균주의 분리 및 특성)

  • 남범식;류원률;이영호;김정목;조무환
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.76-81
    • /
    • 1999
  • Characteristics and oxidizing ability of both $NH_4-N$ and$NO^2$-N were examined for the strains isolated from wastewater treatment facilities and from natural systems by using Winogradsky columns. In case of $NH_4$-N, the most efficient strain was Nitrosomonas KB1 isolated from wastewater treatment facility of K corporation and in case of $NO_2$-N, it was Nitrobacter KB2 from the same site as Nitrosomonas KB1. For Nitrosomonas KB1, 91% of $NH_4$-N was oxidized after 4 days of cultivation. Optimal growth temperature and initial pH of Nitrosomonas KB1 were $28^{\circ}C$ and 7, respectively. In comparison to oxidizing rates with changing initial concentration of $NH_4$-N, the ammonia oxidizing rate was increased up to 6.7 mg/day for the initial $NO_2$-N concentrations for the region lower than 100 mg $NH_4-N/L$, but it was gradually reduced for the region higher than 100 mg $NH_4-N/L$. For Nitrobacter KB2 90% of $NO_2$-N was removed after culturing for 4 days. Optimal growth temperature and initial pH of Nitrobacter KB2 was $28^{\circ}C$ and 7, respectively. And the nitrite oxidizing rate was increased in proportion to the initial concentrations of $NO_2$-N up to 200 mg/$\ell$, and it was maintained almost 4.2 mg/day irrespective of initial $NO_2$-N higher than 200 mg/L.

  • PDF

Influence of Operating Parameters on Nitrite Accumulation in a Biofilm Reactor and Supplement of External Carbon Source for Denitrification by Sewage Sludge Solubilization (생물막 반응조에서 아질산염 축적에 미치는 운전인자 영향과 하수슬러지 가용화에 의한 탈질반응의 외부탄소원 공급에 관한 연구)

  • Ahn, Hye Min;Lee, Dae Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • A combined process consisted of a biofilm reactor and a continuously stirred-tank reactor (CSTR) was investigated for highly loaded ammonium wastewater treatment via nitrite accumulation. To enhance ammonium oxidizing bacteria over nitrite oxidizing bacteria on the surface of carriers, the biofilm reactor was operated at temperature of $35^{\circ}C$ for more than three months but the influent ammonium (500 mg-N/L) was partially oxidized to nitrite (240 mg-N/L). As pH was increased from 7.5 to 8.0, nitrite accumulation was fully achieved due to the inhibition of nitrite oxidizing bacteria under high free ammonia concentration. The biofilm reactor performance was severely deteriorated at the hydraulic retention time of 12 hr, at which incomplete nitrification of ammonia was observed. Various solubilization methods were applied to sewage sludge for enhancing its biodegradability and the combined method, alkaline followed by ultrasonic, gave the highest solubilization efficiency (58%); the solubilized solution was used as the external carbon source for denitrification reaction in CSTR. FISH analysis showed that the dominant microorganisms on the carriers were ammonium oxidizing bacteria such as Nitrosomonas spp. and Nitrospirar spp. but low amounts of nitrite oxidizing bacteria as Nitrobacter spp. was also detected.

The Effect of Oxidizing Agents on Alkaloid Reduction of Tobacco Extract (담배추출물의 알카로이드감소에 미치는 산화제의 영향)

  • 황건중
    • Journal of Environmental Health Sciences
    • /
    • v.8 no.2
    • /
    • pp.33-46
    • /
    • 1982
  • This experiment was carried out for the purpose of reducing alkaloid in reconstituted tobacco sheet and effluent of reconstituted tobacco sheet manufacturing company by treating oxidizing agents such as ozone, sodium hypochlorite, perchloric acid and hydrogen peroxide to tobacco extract created from the manufacturing process of reconstituted tobacco sheet. The effect of alkaloid reduction in tobacco extract by the volume added, time of treatment and pH of oxidizing agents were as follows: 1. When the solid rate of tobacco extract stood at 10 percent, the content of alkaloid, total sugar, total nitrogen and chlorine was 1,600mg/l, 11,000mg/l, 3,200mg/l and 4,000mg/l, respectively. 2. The effect of alkaloid reduction through ozone treatment was in proportion to time of ozone treatment. Alkaloid showed a 31.2 percent reduction under 8 hours' ozone treatment and 0.23g ozone consumed to remove lmg alkaloid. 3. Alkaloid reduction through sodium hypochlorite treatment was influenced by quantity of chlorine in sodium hypochlorite solution. To remove lmg alkaloid, 36.3mg chlorine was used. Reduction of alkaloid was not affected by time of sodium hypochlorite treatment, while showed the best reaction under pH 5-7. 4. The effect of alkaloid reduction by perchloric acid was under the control of the volume added and time of treatment of perchloric acid. The volume of perchloric acid required to remove alkaloid was on the decrease as time of treatment was getting longer. lmg alkaloid was removed by 0.15g perchloric acid under 8 hours' perchloric acid treatment. 5. Alkaloid reduction reacted slowly to the volume added and time of treatment of hydrogen peroxide. Under 8 hours' hydrogen peroxide treatment, it showed maximum removal, registering 10 percent alkaloid reduction.

  • PDF

Diversity of Nitrifying and Denitrifying Bacteria in SMMIAR Process (완전침지형 회전매체공정 내 질산화 및 탈질 관련 미생물의 군집 분포)

  • Quan, Zhe-Xue;Lim, Bong-Su;Kang, Ho;Yoon, Kyung-Yo;Yoon, Yeo-Gyo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1014-1021
    • /
    • 2006
  • SMMIAR (Submerged Moving Media Intermittent Aeration Reactor) Process is a very efficient system which remove ammonia to nitrogen gas in one reactor. In this study, we determined the diversity of ammonia oxidizing bacteria and denitrifying bacteria using specific PCR amplification and the clone library construction. An ammonia monooxygenase gene(amoA) was analyzed to investigate the diversity of nitrifiers. Most of amoA gene fragments (27/29, 93%) were same types and they are very similar (>99%) to the sequences of Nitrosomonas europaea and other clones isolated from anoxic ammonia oxidizing reactors. ANAMMOX related bacteria have not determined by specific PCR amplification. A nitrite reductase gene(nirK) was analyzed to investigate the diversity of denitrifying bacteria. About half (9/20, 45%) of denitrifiers were clustered with Rhodobacter and most of others were clustered with Mesorhizobium (6/20, 30%) and Rhizobium (3/20, 15%). All of these nirK gene clones were clustered in alpha-Proteobacteria and this result is coincide with other system which also operate nitrification and denitrification in one reactor. The molecular monitoring of the population of nitrifiers and denitrifiers would be helpful for the system stabilization and scale-up.

Detection and Potential Abundances of Anammox Bacteria in the Paddy Soil

  • Khanal, Anamika;Lee, Seul;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • BACKGROUND: Microbes that govern a unique biochemical process of oxidizing ammonia into dinitrogen gas, such as anaerobic ammonium oxidation (anammox) have been reported to play a pivotal role in agricultural soils and in oceanic environments. However, limited information for anammox bacterial abundance and distribution in the terrestrial habitats has been known. METHODS AND RESULTS: Phylogenetic and next-generation sequencing analyses of bacterial 16S rRNA gene were performed to examine potential anammox bacteria in paddy soils. Through clone libraries constructed by using the anammox bacteria-specific primers, some clones showed sequence similarities with Planctomycetes (87% to 99%) and anammox bacteria (94% to 95%). Microbial community analysis for the paddy soils by using Illumina Miseq sequencing of 16S rRNA gene at phylum level was dominated by unclassified Bacteria at 33.2 ± 7.6%, followed by Chloroflexi at 20.4 ± 2.0% and Acidobacteria at 17.0 ± 6.5%. Planctomycetes that anammox bacteria are belonged to was 1.5% (± 0.3) on average from the two paddy soils. CONCLUSION: We suggest evidence of anammox bacteria in the paddy soil. In addition to the relatively well-known microbial processes for nitrogen-cycle, anammox can be a potential contributor on the cycle in terrestrial environments such as paddy soils.