• Title/Summary/Keyword: Nitrogen monoxide

Search Result 211, Processing Time 0.019 seconds

Analysis of Trace Impurities in The Bulk Gases by a Cold Concentration Method (저온 농축법에 의한 극미량 성분 가스분석)

  • Lee Taeck-Hong;Hong So Young;Jung Woo Chan;Kim Young Rak;Suh Jung Woo;Han Ju Tack;Park Doo Seon;Son Moo Ryong
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.260-265
    • /
    • 1997
  • Analysis of trace impurities in the bulk .gas has been very important with the development of semi-conductor related industry. In the paper, we reported the analysis of the trace impurites of carbon monoxide and methane in the bulk helium and hydrogen by the GC-TCD with a cold nitrogen trap. We compared these results by the paraallel analysis. All data showed a good correspondence, showing reliable statistical error ranges.

  • PDF

Associations between Air Pollution and Asthma-related Hospital Admissions in Children in Seoul, Korea: A Case-crossover Study (환자교차 설계 방법을 적용한 소아천식 입원에 대한 도시 대기오염의 급성영향평가)

  • Lee, Jong-Tae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.36 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • Objectives : I used a case-crossover design to investigate the association between air pollution, and hospital admissions for asthmatic children under the age of 15 years in Seoul, Korea Methods : I estimated the changes in the levels of hospitalization risk from theinterquartile (IQR) increase in each pollutant concentrations, using conditional logistic regression analyses, with controls for weather information. Results : Using bidirectional control sampling, the results from a conditional logistic regression model, with controls for weather conditions, showed the estimated relative risk of hospitalization for asthma among children to be 1.04 (95% confidence interval (CI), 1.01-1.08) for particulate matter with an aerodynamic diameter less than or equal to 10m (IQR=40.4ug/m3); 1.05 (95% CI, 1.00- 1.09) for nitrogen dioxide (IQR=14.6ppb): 1.02 (95% CI,0.97-1.06) for sulfur dioxide (IQR=4.4ppb): 1.03 (95% CI, 0.99-1.08) for ozone (IQR=21.7ppb): and 1.03 (95% CI, 0.99-1.08) for carbon monoxide f10R=1.0ppm). Conclusions : This empirical analysis indicates the bidirectional control sampling methods, by design, would successfully control the confounding factors due to the long-term time trends of air pollution. These findings also support the hypothesis that air pollution at levels below the current ambient air quality standards of Korea is harmful to sensitive subjects, such as asthmatic children.

Pumping Performance Test of the NEG Elements (비증발형 게터소자 배기특성 평가시험)

  • 인상렬;박미영;정기석
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.2
    • /
    • pp.47-53
    • /
    • 2004
  • A getter pump test system is being developed as a core item of the national project for establishing the foundation of the vacuum technology in our country. A preliminary test system was prepared for developing the getter test procedure, and providing design requirements and system specifications before setting up the getter pump test system. The pumping speed and the pumping capacity of getter elements of low activation temperature used in the seal-off vacuum devices, for the hydrogen, carbon monoxide and nitrogen gases, were measured using the preliminary test system. The pumping characteristics of a domestic getter, developed mainly for the gas purifier, were compared with those of a foreign getter used widely in the lamp factories.

A Study on the Combustion and Exhaust Emission Characteristics with the Variations of Mixing and Air-fuel Ratio of Bio-ethanol - Gasoline in a SI Engine (SI엔진에서 바이오에탄올-가솔린 혼합율 및 공연비 변화에 따른 연소 및 배기배출물 특성에 관한 연구)

  • Yoon, Seunghyun;Ha, Sungyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.358-364
    • /
    • 2016
  • The combustion and exhaust emission characteristics in a spark ignition (SI) engine with various test fuels (bioethanol - gasoline blends) and air-fuel ratio were investigated in this research. To investigate the influence of the excess air ratio and ethanol blends on the combustion characteristics such as the cylinder pressure, rate of heat release (ROHR), and fuel consumption rate were analyzed. In addition, the reduction effects of exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), and oxides of nitrogen (NOx) were compared with those of neat gasoline fuel under the various excess-air ratios. The results showed that the peak combustion pressures and the ROHR of bioethanol fuel cases were slightly higher than those of gasoline fuel at all test ranges and fuel ratio. As compared with gasoline fuel (G100) at each given excess air ratio, BSFC of bio-ethanol was increased. The CO, HC, NOx emissions of bio-ethanol blends were lower than those of gasoline fuel under overall experimental conditions.

Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성)

  • Shin, Dalho;Park, Suhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

The Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for IDI Diesel Engine (간접분사식 디젤기관에서 바이오디젤연료의 연소 특성)

  • 유경현;윤용진;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.72-78
    • /
    • 2003
  • Recently, lots of researchers have been attracted to develope various alternative fuels and to use renewable fuels as a solution of environmental problems from automobile. The use of biodiesel fuel is an effective way of substituting diesel fuel in the long nun. It is a domestically produced, renewable fuel that can be manufactured from vegetable oils, used vegetable oils, or animal fats. In this study, the usability of biodiesel fuel derived from rice ban oil, one of the oxygenated fuels as an alternative fuel for diesel engines was investigated in IDI diesel engine. Emissions were characterized with neat biodiesel fuel and with a blend of biodiesel fuel and conventional diesel fuel. Since the biodiesel fuel includes oxygen of about 11%, it could influence the combustion process strongly. So, the use of biodiesel fuel resulted in lower emissions of carbon monoxide and smoke emissions with some increase in emissions of oxides of nitrogen. It is concluded that biodiesel fuel can be utilized effectively as a renewable fuel for IDI diesel engine.

Hybrid artificial bee colony-grey wolf algorithm for multi-objective engine optimization of converted plug-in hybrid electric vehicle

  • Gujarathi, Pritam K.;Shah, Varsha A.;Lokhande, Makarand M.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 2020
  • The paper proposes a hybrid approach of artificial bee colony (ABC) and grey wolf optimizer (GWO) algorithm for multi-objective and multidimensional engine optimization of a converted plug-in hybrid electric vehicle. The proposed strategy is used to optimize all emissions along with brake specific fuel consumption (FC) for converted parallel operated diesel plug-in hybrid electric vehicle (PHEV). All emissions particulate matter (PM), nitrogen oxide (NOx), carbon monoxide (CO) and hydrocarbon (HC) are considered as optimization parameters with weighted factors. 70 hp engine data of NOx, PM, HC, CO and FC obtained from Oak Ridge National Laboratory is used for the study. The algorithm is initialized with feasible solutions followed by the employee bee phase of artificial bee colony algorithm to provide exploitation. Onlooker and scout bee phase is replaced by GWO algorithm to provide exploration. MATLAB program is used for simulation. Hybrid ABC-GWO algorithm developed is tested extensively for various values of speeds and torque. The optimization performance and its environmental impact are discussed in detail. The optimization results obtained are verified by real data engine maps. It is also compared with modified ABC and GWO algorithm for checking the effectiveness of proposed algorithm. Hybrid ABC-GWO offers combine benefits of ABC and GWO by reducing computational load and complexity with less computation time providing a balance of exploitation and exploration and passes repeatability towards use for real-time optimization.

Effect of Equivalence Ratio on the Combustion Characteristics in a CI Engine Fueled with Biodiesel (바이오디젤 연료 압축착화 엔진의 당량비 변화가 연소 및 배출물특성에 미치는 영향)

  • Kang, Min-Gu;Kwon, Seok-Joo;Cha, June-Pyo;Lim, Young-Kwan;Park, Sung-Wook;Lee, Chang-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.52-58
    • /
    • 2011
  • The purpose of this paper is to investigate the effect of equivalence ratio on the combustion and emission characteristics of a compression ignition engine fueled with biodiesel. In this research, a single-cylinder direct injection engine with 373.3 cc of displacement volume was tested on DC dynamometer. In order to investigate the effect of biodiesel equivalence ratio on combustion characteristics, the experiments were conducted at various equivalence ratios and injection pressures of 40~120 MPa. For investigating engine performance, lambda meter was connected and equivalence ratios was varied from 0.6 to 1.0. In addition, the exhaust emissions such as oxides of nitrogen($NO_X$), hydrocarbon(HC) and carbon monoxide(CO) were measured by exhaust gas analyzer under the various air/fuel ratios. The experimental results show that maximum IMEP was measured at the 0.8 of equivalence ratio. Furthermore, $NO_X$ emission was rapidly decreased as the increase of equivalence ratio. However soot emission was significantly increased according to the increase of equivalence ratio.

Internal modifications to reduce pollutant emissions from marine engines. A numerical approach

  • Lamas, M.I.;Rodriguez, C.G.;Rodriguez, J.D.;Telmo, J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.493-501
    • /
    • 2013
  • Taking into account the increasingly stringent legislation on emissions from marine engines, this work aims to analyze several internal engine modifications to reduce $NO_x$ (nitrogen oxides) and other pollutants. To this end, a numerical model was employed to simulate the operation cycle and characterize the exhaust gas composition. After a preliminary validation process was carried out using experimental data from a four-stroke, medium-speed marine engine, the numerical model was employed to study the influence of several internal modifications, such as water addition from 0 to 100% water to fuel ratios, exhaust gas recirculation from 0 to 100% EGR rates, modification of the overlap timing from 60 to $120^{\circ}$, modification of the intake valve closing from 510 to $570^{\circ}$, and modification of the cooling water temperature from 70 to $90^{\circ}C$. $NO_x$ was reduced by nearly 100%. As expected, it was found that, by lowering the combustion temperature, there is a notable reduction in $NO_x$, but an increase in CO (carbon monoxide), HC (hydrocarbons) and consumption.

Analysis of Time Series Models for Ozone Concentration at Anyang City of Gyeonggi-Do in Korea (경기도 안양시 오존농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.604-612
    • /
    • 2008
  • The ozone concentration is one of the important environmental issue for measurement of the atmospheric condition of the country. This study focuses on applying the Autoregressive Error (ARE) model for analyzing the ozone data at middle part of the Gyeonggi-Do, Anyang monitoring site in Korea. In the ARE model, eight meteorological variables and four pollution variables are used as the explanatory variables. The eight meteorological variables are daily maximum temperature, wind speed, amount of cloud, global radiation, relative humidity, rainfall, dew point temperature, and water vapor pressure. The four air pollution variables are sulfur dioxide $(SO_2)$, nitrogen dioxide $(NO_2)$, carbon monoxide (CO), and particulate matter 10 (PM10). The result shows that ARE models both overall and monthly data are suited for describing the oBone concentration. In the ARE model for overall ozone data, ozone concentration can be explained about 71% to by the PM10, global radiation and wind speed. Also the four types of ARE models for high level of ozone data (over 80 ppb) have been analyzed. In the best ARE model for high level of ozone data, ozone can be explained about 96% by the PM10, daliy maximum temperature, and cloud amount.