• Title/Summary/Keyword: Nitrogen mineralization potential

Search Result 15, Processing Time 0.033 seconds

Potential Nitrogen Mineralization and Availability in Upland Soil Amended with Various Organic Materials

  • Im, Jong-Uk;Kim, Song-Yeob;Jeon, Seong-Hwa;Kim, Jang-Hwan;Yoon, Young-Eun;Kim, Sook-Jin;Lee, Yong-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.40-48
    • /
    • 2017
  • In this study, we evaluated the nitrogen (N) mineralization potential and Nitrogen use efficiency (NUE) of oil-cake, compost, hairy vetch and barley, which are the most widely used organic amendments in South Korea. The N mineralization potential (No) for organic fertilizers treated soil was highest for the hairy vetch treatment with a value of $18.9mg\;N\;100\;g^{-1}$, followed by oil-cake, barley and compost. The amount of pure N mineralization potentials in hairy vetch, oil-cake, barley and compost treatments were 8.42, 7.62, 3.82 and $3.60mg\;N\;100\;g^{-1}$, respectively. The half-life ($t_{1/2}$) of organic N in soil amended with oil-cake fertilizer mineralized quickly in 17 days. While, $t_{1/2}$ values of organic N for the compost and barley treatments accounted to 44.4 and 44.1 days, respectively. Oil-cake was good in supplying nutrients to plants. Compost and barley inhibited plant growth in the beginning growth stage and this is attributed to N immobilization effect. The results of this study highlight that compost and barley could be used as potential slow release fertilizers in conventional agriculture.

Estimation of Nitrogen Mineralization of Organic Amendments Affected by Nitrogen Content in Upland Soil Conditions (밭토양 조건에서 질소함량별 유기자원의 질소 무기화율 추정)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.262-268
    • /
    • 2019
  • BACKGROUND: To investigate mineralization characteristics of organic resources in the soil, five materials (rice straw, cow manure sawdust compost, microorganism compost, mixed oil-cake, and amino acid fertilizer) were treated according to the nitrogen content, and an indoor incubation experiment was conducted for 128 days. The results of this analysis were applied to determine the nitrogen mineralization pattern of these organic resources. METHODS AND RESULTS: During the constant temperature incubation period, the nitrogen net mineralization rate of the organic resources was the highest in the amino acid fertilizer with the highest nitrogen content, and the lowest in the rice straw with the lowest nitrogen content. A positive correlation (0.96) was observed between the potential nitrogen mineralization rate and total nitrogen content. The mineralization rate constant, k, was negatively correlated with the organic matter (-0.96) and carbon content (-0.97). The nitrogen mineralization rate during the first cropping season, as estimated by the model, was 6.6%, 11.6%, 30.9%, 70.7%, and 81.0% for the rice straw, the cow manure sawdust compost, the microorganism compost, the mixed oil-cake, and the amino acid fertilizer, respectively. CONCLUSION: The nitrogen mineralization rate varies depending on the type of organic resources or the nitrogen content; thus, it can be used as an index for determining the nitrogen supply characteristics of the organic resource. Organic resources such as compost with low nitrogen content or those undergoing fermentation contain organic nitrogen. Organic nitrogen is stabilized during the composting process. Therefore, as the nitrogen mineralization rate of these resources is lower than that of non-fermented organic resources, it is desirable to use the fermented organic materials only to improve soil physical properties rather than to supply nutrients for the required amount of fertilizer.

Nitrogen Mineralization in Soil Amended with Oil-Cake and Amino Acid Fertilizer under a Upland Condition (밭토양 조건에서 유박과 아미노산 비료의 질소 무기화량 추정)

  • Im, Jong-Uk;Kim, Song-Yeob;Yoon, Young-Eun;Kim, Jang-Hwan;Lee, Sang-Beom;Lee, Yong-Bok
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.867-873
    • /
    • 2015
  • The potential of nitrogen mineralization was studied by applying organic fertilizer to soil and incubating at $25^{\circ}C$ for 28 weeks. The organic fertilizers used in this experiment were oil-cake (CF-I, CF-II) and amino acid fertilizer (AAF-I, AAF-II). Accumulated mineralized nitrogen (N) fits the frist-order kinetics during incubation. The N mineralization potential ($N_0$) for organic fertilizers treated soil was highest at AAF-II treatment with a value of 27.71 N mg/100g, then followed by CF-II, AAF-I, CF-I. The pure N mineralization potential ($N_0$ treatment - $N_0$ control) for CF-I, CF-II, AAF-I, AAF-II were 2.55, 5.83, 3.66, 8.57 N mg/100g, respectively. The amount of N mineralized from organic fertilizers applied soil ranged from 46% to 61% of the total N content in organic fertilizer. The half-life ($t_{1/2}$) of organic nitrogen in soil treated with oil-cake and amino acid fertilizer was 17-21 days. Therefore, half of nitrogen contained in oil-cake and amino acid fertilizer was mineralized after 3 weeks application.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments as Affected by C:N Ratio and Temperature in Paddy Soil

  • Shin, Jae-Hoon;An, Nan-Hee;Lee, Sang-Min;Ok, Jung-Hun;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.712-719
    • /
    • 2016
  • Understanding N mineralization dynamics in soil is essential for efficient nutrient management. An anaerobic incubation experiment was conducted to examine N mineralization potential and N mineralization rate of the organic amendments with different C:N ratio in paddy soil. Inorganic N in the soil sample was measured periodically under three temperature conditions ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$) for 90 days. N mineralization was accelerated as the temperature rises by approximately $10%^{\circ}C^{-1}$ in average. Negative correlation ($R^2=0.707$) was observed between soil inorganic N and C:N ratio, while total organic carbon extract ($R^2=0.947$) and microbial biomass C ($R^2=0.824$) in the soil were positively related to C:N ratio. Single exponential model was applied for quantitative evaluation of N mineralization process. Model parameter for N mineralization rate, k, increased in proportion to temperature. N mineralization potential, $N_p$, was very different depending on C:N ratio of organic input. $N_p$ value decreased as C:N ratio increased, ranged from $74.3mg\;kg^{-1}$ in a low C:N ratio (12.0 in hairy vetch) to $15.1mg\;kg^{-1}$ in a high C:N ratio (78.2 in rice straw). This result indicated that the amount of inorganic N available for crop uptake can be predicted by temperature and C:N ratio of organic amendment. Consequently, it is suggested that the amount of organic fertilizer application in paddy soil would be determined based on temperature observations and C:N ratio, which represent the decomposition characteristics of organic amendments.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments in Upland Soil

  • Shin, Jae-Hoon;Lee, Sang-Min;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.751-760
    • /
    • 2015
  • Management of renewable organic resources is important in attaining the sustainability of agricultural production. However, nutrient management with organic resources is more complex than fertilization with chemical fertilizer because the composition of the organic input or the environmental condition will influence organic matter decomposition and nutrient release. One of the most effective methods for estimating nutrient release from organic amendment is the use of N mineralization models. The present study aimed at parameterizing N mineralization models for a number of organic amendments being used as a nutrient source for crop production. Laboratory incubation experiment was conducted in aerobic condition. N mineralization was investigated for nineteen organic amendments in sandy soil and clay soil at $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. N mineralization was facilitated at higher temperature condition. Negative correlation was observed between mineralized N and C:N ratio of organic amendments. N mineralization process was slower in clay soil than in sandy soil and this was mainly due to the delayed nitrification. The single and the double exponential models were used to estimate N mineralization of the organic amendments. N mineralization potential $N_p$ and mineralization rate k were estimated in different temperature and soil conditions. Estimated $N_p$ ranged from 28.8 to 228.1 and k from 0.0066 to 0.6932. The double exponential model showed better prediction of N mineralization compared with the single exponential model, particularly for organic amendments with high C:N ratio. It is expected that the model parameters estimated based on the incubation experiment could be used to design nutrient management planning in environment-friendly agriculture.

Soil Nitrogen Mineralization Influenced by Continuous Application of Livestock Manure Composts (가축분퇴비가 연용된 밭 토양에서 잠재적 질소 무기화량 추정)

  • Yun, Hong-Bae;Lee, Youn;Yu, Chang-Yeon;Yang, Jae-E;Lee, Sang-Min;Shin, Jae-Hun;Kim, Suk-Chul;Lee, Yong-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.329-334
    • /
    • 2010
  • The characteristics of nitrogen mineralization in upland soil was studied with 27-week incubation at $25^{\circ}C$. The used soils in this experiment were received six kinds of livestock manure compost each year for four years. Six different composts, which were chicken (CHM), pig (PIM), and cow (COM) manure composted without bulking agent, and chicken (CHMS), pig (PIMS), and cow (COMS) manure composted with sawdust as a bulking agent, were selected for this study. The first-order model was fit to the observed mineral nitrogen (N) vs incubation days using a non-linear regression procedure. The soil potential for N mineralization (No) of manure compost (CHM, PIM, and COM) treated soils were higher than those of the manure-sawdust compost (CHMS, PIMS, and COMS) treated soils. The No value of PIM applied soil was 15.0 mg 100 $g^{-1}$, which was the highest value among the treatments. The amount of N mineralized in compost applied soils ranged from 8.1% to 11.9% of the total N content in soils and increased with increasing total N content in soils. The organic matter content in compost applied soils were negatively correlated with No value (r = $-0.69^*$). Therefore, our result indicated that determination of N application rate in livestock manure compost applied soil should be based on total nitrogen content better than soil organic matter content.

Incorporation of Winter Rapeseed (Brassica napus) as Green Manure on Mineralization and Uptake of Nitrogen to Succeeding Corn (Zea mays L.) (유채의 녹비 환원에 의한 질소무기화 및 옥수수의 질소 흡수)

  • Choi, Bong-Su;Hong, Ki-Chan;Sung, Jwa-Kyung;Nam, Jae-Jak;Lim, Jung-Eun;Lee, Hyeon-Yong;Yang, Jae-E.;Ok, Yong-Sik
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.3
    • /
    • pp.381-391
    • /
    • 2009
  • Crop production can be secured by the cycle of green manure crops as an alternative of the chemical fertilizer. Recently, rapeseed (Brassica napus L.) has been cultivated in the south part of Korea for the production of biodiesel. In this research, we focused on recycling rapeseed residue, which is produced after harvesting the rapeseed for biodiesel, as a potential source of nitrogen to the succeeding crop. Pot experiment was conducted to evaluate the effects of winter rapeseed as green manure on mineralization and uptake of nitrogen to the succeeding corn (Zea mays L.). Result showed that total nitrogen and C/N ratio of rapeseed at the harvesting stage was 0.54% and 63, respectively. The incorporation of rapeseed without decomposition period slightly inhibited nitrogen uptake to the succeeding corn compared to those with 30 days decomposition period. The pH and EC values of soils increased by increasing the period of decomposition of rapeseed from 5.2 to 6.4 and from 0.05 dS/m to 0.21 dS/m, respectively. Significant amounts of $NH_4^+$ and $NO_3^-$ are released by incorporation of rapeseed. The succeeding corn took up 86% and 88% of inorganic nitrogen released from the rapeseed with and without decomposition period, respectively. The overall results suggested that the utilization of rapeseed residue as green manure can be an alternative source of nitrogen in corn-rapeseed double cropping system.

  • PDF

Determination of Soil Nitrogen Supplying Capacity Using Pepsin Digestibility (Pepsin 분해방법을 이용한 토양의 질소 공급력 결정)

  • Kim, Yoo-Hak;Kim, Sun-Kwan;Zhang, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.253-258
    • /
    • 2005
  • It is necessary to determine a nitrogen supplying capacity (NSC) of soil for sustainable agriculture. NSC has been decided by directly detecting N mineralization potential (NMP) and inorganic nitrogen or by indirectly approximating from organic matter and chemical properties of soil. NMP is best method for NSC but it takes long period. A study was conducted to find a short-term incubation method using pepsin through 1) determining NMP of 3 upland and 3 paddy soils, 2) establishing analytical condition of pepsin digestion by comparing to NMP, 3) validating with relations to N requirements for maximum yield of rice. NMPs of 6 soils were ranges from $63mg\;N\;kg^{-1}$ to $156mg\;N\;kg^{-1}$. The pepsin digestion method of soil nitrogen was established by determining amino nitrogen from digesting 5 g of soil for 30 minutes by 0.02% pepsin. This method was so highly correlated with a maximum rate of nitrogen fertilizer that it could be used for determining NSC in paddy soil.

Effects of organic matter sources on nitrogen supply potential in arable land (농경지에서 유기물 시용에 의한 질소 공급 효과)

  • Lee, Ye-Jin;Yun, Hong-Bae;Song, Yo-Sung;Lee, Chang-Hoon;Sung, Jwa-Kyung;Ha, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.431-437
    • /
    • 2015
  • Recently, assessment of nitrogen balance has been required for environmental agriculture. Nutrient management using organic matters in farmlands has been strongly required as a means of extending resource-cycling agriculture and reduction of nitrogen balance. Organic matters-derived nutrients and soil-available nitrogen should be necessarily considered to manage nutrient balance in soil-plant system. In this study, we reviewed the amount of N supply according to types of organic matter such as livestock compost and green manure in arable land. In case of applied livestock compost in soil, nitrogen mineralization was influenced by nitrogen amount of livestock manure and mixed materials. And nitrogen mineralization of green manure in arable land was influenced by types of crop and return period of green manure because of change of C/N ratio. Also, nitrogen supply by organic matter in arable land can be changed by environmental factors such as temperature, moisture in soil. Therefore, nitrogen supply according to C/N ratio of organic matter and analysis method for estimation of soil nitrogen supply availability should be evaluated to set up the nutrient management model.

Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement

  • Shin, Wansik;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Kim, Kiyoon;Gopal, Selvakumar;Samaddar, Sandipan;Banerjee, Somak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • Though there is an abundant supply of nitrogen in the atmosphere, it cannot be used directly by the biological systems since it has to be combined with the element hydrogen before their incorporation. This process of nitrogen fixation ($N_2$-fixation) may be accomplished either chemically or biologically. Between the two elements, biological nitrogen fixation (BNF) is a microbiological process that converts atmospheric di-nitrogen ($N_2$) into plant-usable form. In this review, the genetics and mechanism of nitrogen fixation including genes responsible for it, their types and role in BNF are discussed in detail. Nitrogen fixation in the different agricultural systems using different methods is discussed to understand the actual rather than the potential $N_2$-fixation procedure. The mechanism by which the diazotrophic bacteria improve plant growth apart from nitrogen fixation such as inhibition of plant ethylene synthesis, improvement of nutrient uptake, stress tolerance enhancement, solubilization of inorganic phosphate and mineralization of organic phosphate is also discussed. Role of diazotrophic bacteria in the enhancement of nitrogen fixation is also dealt with suitable examples. This mini review attempts to address the importance of diazotrophic bacteria in nitrogen fixation and plant growth improvement.