• Title/Summary/Keyword: Nitrogen dioxide($NO_2$)

Search Result 233, Processing Time 0.021 seconds

Enhancement of Fermentative Hydrogen Production by Gas Sparging (기체 sparging에 의한 수소 발효의 효율 향상)

  • Kim, Dong-Hoon;Han, Sun-Kee;Kim, Sang-Hyoun;Bae, Byung-Uk;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2004
  • The effect of gas sparging on continuous fermentative $H_2$ production was investigated using external gases ($N_2$, $CO_2$) with various flow rates (100, 200, 300, 400 ml/min). Gas sparging showed a higher $H_2$ yield than no sparging, indicating that the decrease of $H_2$ partial pressure by gas sparging had a good effect on $H_2$ fermentation. Especially, $CO_2$ sparging was more effective in the reactor performance than $N_2$ sparging. The composition of butyrate, the main metabolic product of $H_2$ fermentation by Clostridium sp., was much higher in $CO_2$ sparging. $H_2$ production increased with increasing flow rate only in $CO_2$ sparging. The best performance was obtained by $CO_2$ sparging at 300 ml/min, resulting in the highest $H_2$ yield of 1.65 mol $H_2/mol$ hexoseconsumed and the maximum $H_2$ production of 6.77 L $H_2/g$ VSS/day. Compared to $N_2$ sparging, there could be another beneficial effect in $CO_2$ sparging apart from lowering down the $H_2$ partial pressure. High partial pressure of $CO_2$ had little effect on $H_2$ producing bacteria but inhibitory effect on other microorganisms like lactic acid bacteria and acetogens which were competitive with $H_2$ producing bacteria.

  • PDF

The effects of blocking the oxygen in the air during the polymerization of sealant (광중합 시 공기 중 산소의 차단이 치면열구전색제의 중합에 미치는 영향)

  • Oh, You-Hyang;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.3
    • /
    • pp.365-376
    • /
    • 2006
  • The purpose of this study was to evaluate the efficacy of blocking the oxygen in the air during the polymerization of sealant. All curing were performed with various light curing units under the application of oxygen gel barrier, stream of nitrogen and carbon dioxide gas for inhibition of oxygen diffusion into sealant surface. The results of present study can be summarized as follows : 1. The amount of eluted TEGDMA form the specimens cured with all the three different light units in the stream of $N_2$ and $CO_2$ gas and application of Oxygen gel barrier($DeOx^{(R)}$) were significantly lower than in the room-air atmosphere (Control) (p<0.05). 2. In the $DeOx^{(R)}$ application, the amount of eluted TEGDMA the specimen cured with PAC light for 10seconds was less than that cured in the stream of $N_2$ and $CO_2$ atmospheric conditions (p<0.05) 3. In the LED using 10 or 20sec irradiation times under the stream of $N_2$ and $CO_2$, the eluted TEGDMA showed to be no statistically significant difference (p>0.05). 4. The microhardness from the specimens cured with all the three different light units under each treated conditions were significantly higher than in the room-air atmosphere (p<0.05). 5. The surface treatment by $DeOx^{(R)}$, $N_2$ and $CO_2$ reduces the thickness of oxygen inhibited layer by sp proximately 49% of the untreated control value.

  • PDF

An Analytical Study of Geologic Characteristics and Production- Related Problems of Beep Natural Gas Resources (심부 천연가스의 지질학절 부존 환경 특성과 생산관련 현안 문제점 분석 연구)

  • Chang Seungyong
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.28-46
    • /
    • 2001
  • Natural gas is a mixture of hydrocarbon gases and impurities such as nitrogen, hydrogen sulfide, and carbon dioxide and a clean energy producing no pollution materials for combustion. Currently, the demand of the natural gas is rapidly increasing due to worldwide environmental problems. According to Hubbert's study in the past, the natural gas was predicted as rapidly depleted resources, and then the results led to high gas price and limitation of usage during 1980s. Afterward, the study of natural gas resources based on geology identified the additional natural gas resources that were not considered in Hubbert's study. They are unconventional gas, additional resources in the existed reservoirs, and natural gas in deep subsurface areas. Such additional resouces made the future of natural gas bright and pormised low and stable gas price in the future. Deep natural gas is defined as the gas existing at or below 15,000ft$(4,752{\cal}m)$ in depth from the surface. According to the study from the U.S. Geological Survey(USGS) in 1995, 1,412 TCF of technically recoverable natural gas was remained to be discovered or developed in the onshore of United States. A significant part of that resource base, 114 TCF, exists at deep sedimentary basins, and it shows wide distribution with various geological environments. In 1995, the deep gas contributed to $6.7\% of total supply amount of natural gas in the United States and is expected to be $18.7\% by 201.5. However, the development of the deep gas is a high risky business due to expensive investment and high portion of dry holes, although it is developed. Thus, for developing the deep gas economically, it is necessary to overcome many technical challenges. In this paper, for increasing success rate of the deep gas, 1) geologic and compositional characteristics, and production cost have been analyzed according to depth, 2) technical problems related to deep gas production have been summarized, and 3) finally future study areas for increasing application of the deep gas have been suggested. For reference, this paper was written based on the study results from USGS and Gas Research Institute(GRI), for the United States is doing the most active R&D in the deep gas area, and thus, has many reliable data.

  • PDF