• 제목/요약/키워드: Nitrogen deposition

검색결과 384건 처리시간 0.028초

황해 지역의 질소와 황 침적 추정 (Estimation of Nitrogen and Sulfur Deposition over the Yellow Sea Region)

  • 김진영;김영성;이승복;문길주
    • 한국대기환경학회지
    • /
    • 제19권2호
    • /
    • pp.217-229
    • /
    • 2003
  • The amounts of nitrogen and sulfur deposited in the region of the Yellow Sea in both dry and wet forms were estimated by using the measurement data published in tile literature during tile past 10 years. In the estimation of dry deposition, concentrations at ground stations including those at a station on the Chinese side and concentrations from shipboard and aircraft measurements were used as well as deposition velocities. Wet deposition flux was determined at ground stations on the Korean side either by taking the flux data themselves or by calculating them from precipitation data in the literature. The dry deposition flux over the Yellow Sea was much greater than those China was confirmed from the fact that the total amount summing wet and dry depositions exceeded the emission amount from Korea. Dry deposition was principally made in the gaseous form due to a larger deposition velocity. Nevertheless, since the deposition velocity over water was smaller than that over the ground, dry deposition of oxidized nitrogen was smaller than wet deposition. As a whole, wet depositions of nitrogen and sulfur were 2.3 and 1.9 times 1arger than corresponding dry depositions, respectively.

대기 질소강하물이 육상 생태계에 미치는 영향 및 국내 연구제안 (Effects of Nitrogen Deposition on Terrestrial Ecosystems)

  • 강호정
    • 환경생물
    • /
    • 제19권4호
    • /
    • pp.232-238
    • /
    • 2001
  • 본 논문에서는 대기로부터 유입되는 질소강하물이 육상생태계에 미칠 영향에 대해 살펴보았다. 질소강하는 산업화 및 화석원료의 사용(특히 자동차의 증가)과 집약적인 농업으로 인해 유럽과 북미를 중심으로 급격한 속도로 증가하고 있으면 한국도 이와 같은 증가 추세를 나타내고 있는 것으로 알려져 있다. 이에 따라 증가된 질소유입은 처음에는 육상생태계의 일차생산성을 증가 시키지만 장기적으로는 산림의 질소포화(Nitrogen Saturation)를 일으켜 산림의 쇠퇴나 생태계의 교란을 일으킬 수 있다. 주요 기작으로는 영양소의 불균형, 토양의 산성화, 독성이온의 유동화 등이 알려져 있다. 이와 더불어 질소강하의 증가는 토양 내 유기물 분해속도를 늦출 수 있으며, 유출되는 질산은 수생생태계의 부영양화를 야기할 수 있다. 마지막으로 이 문제와 연관되어 국내에서 진행해야 한다고 생각되는 연구주제 몇 가지가 제안 되었다.

  • PDF

팔당호 유역에 대한 질소와 황의 건식 침적량 추정 (Estimation of Nitrogen and Sulfur Dry Deposition over the Watershed of Lake Paldang)

  • 김진영;김영성;원재광;윤순창;우정헌;조규탁
    • 한국대기환경학회지
    • /
    • 제21권1호
    • /
    • pp.49-62
    • /
    • 2005
  • Lake Paldang is a main resource of drinking water for 20 million people in the greater Seoul area. Dry deposition amounts of nitrogen and sulfur were estimated for three typical days in each season over the watershed of Lake Paldang. Models- 3/CMAQ (Community Multiscale Air Quality) and MM5 (Mesoscale Model) were used to predict air quality and meteorology, respectively. Aerosols as well as gaseous pollutants were considered. Nitrogen was mainly deposited in the form of HNO, while most of sulfur was deposited in the form of SO$_2$. Contribution of secondary pollutants was the largest in fall since they were transported from the greater Seoul area. However, contribution of secondarily-formed particulate pollutants to the nitrogen deposition was the largest in winter because semi-volatile ammonium nitrate favors lower temperature. Annual deposition amounts of nitrogen and sulfur were 37% and 26% of their emission amounts, respectively, over the watershed of Lake Paldang. Higher value of the nitrogen deposition showed a more influence of pollutants emitted in the greater Seoul area.

Characteristics of Atmosphere-rice Paddy Exchange of Gaseous and Particulate Reactive Nitrogen in Terms of Nitrogen Input to a Single-cropping Rice Paddy Area in Central Japan

  • Hayashi, Kentaro;Ono, Keisuke;Matsuda, Kazuhide;Tokida, Takeshi;Hasegawa, Toshihiro
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권3호
    • /
    • pp.202-216
    • /
    • 2017
  • Nitrogen (N) is an essential macronutrient. Thus, evaluating its flows and stocks in rice paddy ecosystems provides important insights into the sustainability and environmental loads of rice production. Among the N sources of paddy fields, atmospheric deposition and irrigation inputs remain poorly understood. In particular, insufficient information is available for atmosphere-rice paddy exchange of gaseous and particulate reactive N (Nr, all N species other than molecular N) which represents the net input or output through dry deposition and emission. In this study, we assessed the N inputs via atmospheric deposition and irrigation to a Japanese rice paddy area by weekly monitoring for 2 years with special emphasis on gas and particle exchange. The rice paddy during the cropping season acted as a net emitter of ammonia ($NH_3$) to the atmosphere regardless of the N fertilizer applications, which reduced the effects of dry deposition to the N input. Dry N deposition was quantitatively similar to wet N deposition, when subtracting the rice paddy $NH_3$ emissions from N exchange. The annual N inputs to the rice paddy were 3.2 to $3.6\;kg\;N\;ha^{-1}\;yr^{-1}$ for exchange, 8.1 to $9.8\;kg\;N\;ha^{-1}\;yr^{-1}$ for wet deposition, and 11.1 to $14.5\;kg\;N\;ha^{-1}\;yr^{-1}$ for irrigation. The total N input, 22.8 to $27.5\;kg\;N\;ha^{-1}\;yr^{-1}$, corresponded to 38% to 55% of the N fertilizer application rate and 53% to 67% of the brown rice N uptake. Monitoring of atmospheric deposition and irrigation as N sources for rice paddies will therefore be necessary for adequate N management.

팔당호로의 질소와 황성분 침적 측정 (Measurement of Nitrogen and Sulfur Deposition to Lake Paldang)

  • 김영성;진현철
    • 한국대기환경학회지
    • /
    • 제21권1호
    • /
    • pp.39-48
    • /
    • 2005
  • Nitrogen and sulfur deposition was measured on Lake Pal dang from March 2002 to October 2003. Wet and dry depositions were separately measured using wet- and dry-only samplers, respectively. In order to measure the dry deposition to the water body, a dry deposition sampler composed of three pans filled with pure water, called the deposition water, was used. Since ammonium was generally in excess in ambient air, more than half of ammonium was present in the gaseous form. Ammonium concentration was also generally higher than the sum of major anion concentrations in the deposition water because gaseous species were much easily deposited than the species in fine particles. Nevertheless, the contribution of gaseous ammonia to the deposition of ammonium was not high as well as that of particulate ammonium while the contribution of gaseous nitric acid was much higher than that of particulate nitrate. Annual wet deposition fluxes of nitrogen and sulfur were five and six times higher than their dry deposition fluxes, respectively. Except for ammonium, the dry deposition flux estimated in the present work was a half of the previous results. This was mainly caused by much smaller dry deposition velocities over the water than over the ground.

Adsorption of nitrate onto nitrogen-doped activated carbon fibers prepared by chemical vapor deposition

  • Yoo, Pyunghwa;Amano, Yoshimasa;Machida, Motoi
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2468-2473
    • /
    • 2018
  • Nitrogen-doped activated carbon fibers (ACFs) were prepared by chemical vapor deposition using melamine powder and acetonitrile for introducing quaternary nitrogen on the commercial ACFs, subsequently heated at $950^{\circ}C$ and activated by steam. Adsorption experiments of nitrate in aqueous solution were also conducted to evaluate adsorption capacity of the prepared ACFs using ion chromatography. The amount of introduced nitrogen content and nitrogen species on activated carbon fibers was examined by CHN elemental analyzer and X-ray photoelectron spectroscopy, respectively. As a result, adsorption capacity of quaternary nitrogen-doped ACF (ST-ML-AN-ST) was 0.75 mmol/g, indicating ca. two-times higher than that of untreated ACF (0.38 mmol/g). According to the adsorption data, the Langmuir isotherm model was the best fit. The prepared samples were also regenerated using hydrochloric acid. After regeneration, the adsorption capacity of the nitrogen-doped ACF (ST-ML-AN-ST) showed ca. 80% on average, implying that a portion of nitrates was adsorbed on the prepared ACFs irreversibly.

대기 산성 강하물 : 삼림의 질소 포화 (Atmospheric Acid Deposition : Nitrogen Saturation of Forests)

  • 김준호
    • Journal of Ecology and Environment
    • /
    • 제29권3호
    • /
    • pp.305-321
    • /
    • 2006
  • 대기 산성 강하물 : 삼림의 질소 포화 한국의 연평균 습성 질소 강하량은 12.78(범위: $7.28{\sim}21.05)\;kgN{\cdot}ha^{-1}{\cdot}yr^{-1}$이고, 이것에 건성 질소 강하량(43%)을 합하여 추정한 총질소 강하량은 18.26(10.41-30.10) $kgN{\cdot}ha^{-1}{\cdot}yr^{-1}$이 된다. 이 질소 강하량은 유럽과 북미 북동부의 질소 강하량과 비슷한 수준이다. 대기 질소 강하량이 많은 온대 삼림은 질소로 포화된다. 질소로 포화된 삼림은 계류수와 토양에 질산이온 ($NO_3^-$)과 질산태질소/암모늄태질소이($NO_{3}^{-}-N/NH_{4}^{+}-N$)의 비가 높아지고, 잎의 질소 농도가 높아지므로 N/P비, N/K비 및 N/Mg 비가 높아지는 것으로 보아 무기 영양소 교란이 일어나며, 상해와 병해에 걸리기 쉬워지고 세근과 근균의 활성이 낮아짐으로써 생산성이 낮아진다. 그러고 혐질소성 종이 호질소성 종에 의하여 대치된다. 질소로 포화된 토양에서는 온실가스인 메탄($CH_4$)의 흡수가 감소되고 일산화질소 (NO)와 아산화질소 ($N_{2}O$)의 배출이 증가되어 지구온난화를 촉진할 수 있다. 이 종설은 한국의 33장소에서 6년 동안 ($1999{\sim}2004$) 측정한 부피가중 연평균 습성 질소 강하량이 삼림의 질소 포화 수준에 달하고, 광릉시험림분수계와 그 밖의 삼림 계류수의 $NO_3$ 유출량으로 미루어 보아 한국의 삼림에 질소 포화의 징후가 나타났음을 제시하며, 문헌 자료를 통해서 외국의 삼림에서 일어나는 질소 포화의 징후를 체계적으로 논하는 데 목적이 있다.

주암호에 대한 질소화합물의 대기건식침적 특성 (Atmospheric Dry Deposition Characteristics of Nitrogen-containing Compounds into Juam Reservoir)

  • 정장표;장영환
    • 한국대기환경학회지
    • /
    • 제21권6호
    • /
    • pp.657-666
    • /
    • 2005
  • The objectives of this study were to investigate atmospheric dry deposition of inorganic nitrogen-containing compounds to waterbody. Target waterbody is Juam reservoir functioning as one of the major water supply sources in Chollanamdo. Nitrate and ammonium dry deposition fluxes were directly measured using dry deposition plate (DDP) covered with greased strips and a water surface sampler (WSS). The daytime average $NO_{3}^{-}\;and\;NH_{4}^{+}$ fluxes measured with DDP and WSS were $1.7\∼2.6$ times higher than those at nighttime. The seasonal average flux of $NH_{4}^{+}$ showed the highest value in summer. The daytime and nighttime average dry deposition fluxes of particulate phase Nitogen-containing Compounds ($1.13,\;0.80\;mg/m^{2}$ day) were much higher than those of gas phase compounds ($0.50,\;0.24\;mg/m^{2}$ day).

The Effect of Chamber Pressure and Nitrogen Flow Rate on Deposition Characteristics of $(Ni_{0.8}Fe_{0.2})_{20}Ag_{80}$ Thin Films

  • Oh, T.S.;Choo, W.K.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 12th KACG Technical Meeting and the 4th Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.275-280
    • /
    • 1997
  • We have investigated the deposition characteristics of (Ni0.8Fe0.2)20Ag80 thin films as a function of chamber pressure and nitrogen flow rate with scanning electron microscopy(SEM), atomic force microscopy(AFM), XRD and $\alpha$-step. The deposition rate of these film is decreased with increasing the chamber pressure and the nitrogen flow rate. With raising the chamber pressure, the growth mode of thin film is changed from island growth to columnar one, which is probably due to energy of atom. Contrary, the nitrogen flow rate is raised, growth mode is changed from columnar to island one. According to the XRD patterns, the preferred orientation is inhibited as the nitrogen flow rate is kept above 10 sccm, but that is nearly independent on the chamber pressure. When the chamber pressure decrease or the nitrogen flow rate increase, phase separation into permoally and silver is occured.

  • PDF

필터팩을 이용한 서울과 춘천, 안면도의 건성 강하량 측정 (Measurement of Dry deposition at Seoul, Chunchon and Anmyon-do by Using Filter pack Method)

  • 김만구;강미희;홍영민;박기준;이보경;이동수;김산
    • 한국대기환경학회지
    • /
    • 제17권1호
    • /
    • pp.19-29
    • /
    • 2001
  • Atmospheric concentrations of acidic pollutant were measured by the 4 stage filter pak method at Chunchon and by the 3 stage filter pack method at Seoul and Anmyon-do from January to December 1998. The sample was collected for 24 hours on every Wednesday. Concentrations of particulate matters were highest at Anmyon-do. The particulate concentration was much higher during the warm season than other seasons. While the particulate concentration was higher during the warm season, the concentration of gaseous matter was higher in winter. Dry deposition flux was calculated by using reported deposition velocities and concentration of pollutants measured in this study. The dry deposition velocities used in this study for SO$_2$, SO$_{4}^{2}$, HNO$_3$,NO$_{3}^{-}$ and NH$_3$ were 0.29, 0.15, 2.08( 2.13 only for Anmyon-do), 0.20 and 1.00cm/sec, respectively. At Chunchon, annual sulfur flux originated from dry deposition was 384 kg/$textrm{km}^2$, and the flux from wet deposition was 782kg/$textrm{km}^2$. Dry deposition of sulfur was 33% of total sulfur deposition. The annual nitrogen flux originated from dry deposition was 1,892kg/$textrm{km}^2$. And the flux from wet deposition was 1,066kg/$textrm{km}^2$. Dry deposition of nitrogen was 64% of total nitrogen deposition. Dry deposition as well as wet deposition have to be considerd in the study on acidification of environment such as soil or watershed.

  • PDF