• Title/Summary/Keyword: Nitrogen and phosphorus removal

Search Result 424, Processing Time 0.029 seconds

Simultaneous N-P Removal of Wastewater with Flow Variation by Anaerobic-Aerobic Activated Sludge Process(I) (혐기-호기 활성슬러지법에 의한 유량변동이 있는 폐수의 N-P 동시 제거에 관한 연구(I))

  • Lee, Min-Gyu;Suh, Kuen-Hack
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.123-123
    • /
    • 1995
  • The treatment performances of anaerobic-aerobic activated sludge process were investigated under various operation conditions. The treatment system proposed in this study gave a relatively stable performance against hourly change of the flow rate and showed a satisfactory removal of nitrogen and phosphorus compounds under experimental conditions. The recycle ratio of mixed liquor from aerobic to anaerobic region and peak coefficient primarily controlled the extent of nitrogen removal. The recycle ratio had the optimum values which were determined by the microbial activities of nitrification and denitrification. The behavior of the treatment unit could be simulated by using the kinetic equations and reactor models which considered the treatment units as complete mixing tanks.

Application of Hybrid Constructed Wetland System for Stream Water Quality Improvement (오염하천 수질개선을 위한 Hybrid형 인공습지의 적용)

  • Kim, Seung-jun;Choi, Yong-su;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.209-214
    • /
    • 2006
  • The purpose of this study is to improve the stream water quality by the experimental hybrid constructed wetland system. It consisted of the water layer, sand bed planted reeds, irises and roses, gravel bed, yellow-soil media bed and a flow shifter (FS) which can reverse top and bottom flow in the middle of the wetland. The organic compounds and nitrogen removal efficiencies varied with the seasons, namely temperature change. In summer, the mean efficiencies of COD and TN in the outflow from this wetland system were 63.4 and 48.0% and shown the highest, respectively, whereas, the suspended solids and phosphorus removal efficiencies seemed to be less affected by temperature. As a result of inspecting the decreasing trend of pollutants, nitrification-denitrification in the wetland was the major removal mechanism for nitrogen, the nitrogen reduction was especially enhanced by the application of a FS in the wetland, and phosphorus reduction was mainly occurred as a consequence of adsorption of the yellow-soil media.

Comparison of Biological Phosphorus Removal Characteristics between A/O and A2/O Process (A/O 및 A2/O공정의 생물학적 인제거 특성비교)

  • Kim, Kwang-Soo;Seo, Gyu-Tae;Lee, Kyung-Ho;Kim, Nag-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2002
  • Bench scale experiments were carried out with two biological nutrient removal(BNR) units, A/O and $A^2O$ processes, to investigate the behavior of phosphorus in the system and to compare the characteristics of phosphorus removal in two BNR processes. To achieve this goal, COD/T-P and COD/TKN ratios of the influent was varied in the range of 23~64 and 5~24, respectively. In A/O process, influent COD/T-P ratio should be kept higher than 44mg/L to meet the final effluent T-P concentration lower than 1mg/L and in $A^2/O$ process, influent COD/T-P and COD/TKN ratios higher than 56 and 10, respectively, were required for good phosphorus release and uptake with no influence of nitrate nitrogen in return sludge. At this conditions, the rate of phosphorus release in the anaerobic basin should be kept higher than 0.1 kg S-P/kg MLVSS d In A/O process, the phosphorus content of anaerobic and aerobic sludges was increased as SRT of total system was becoming longer resulting in decreasing the difference of phosphorus content between two sludges while phosphorus release in anaerobic basin and phosphorus uptake in aerobic basin was not incident. In $A^2/O$ process, the phosphorus content of anaerobic and aerobic sludges were not increased with higher SRT of total system due to the relatively high nitrate concentration in return sludge. However, the difference of phosphorus content between anaerobic and aerobic sludges was incident when phosphorus release and uptake was observed.

Simultaneous Removal of Organic Pollutants, Nitrogen, and Phosphorus from Livestock Wastewater by Microbubble-Oxygen in a Single Reactor (단일반응기에서 마이크로버블-산소를 이용한 가축분뇨의 유기오염물질, 질소 및 인의 동시 제거)

  • Jang, Jae Kyung;Jin, Yu Jeong;Kang, Sukwon;Kim, Taeyoung;Paek, Yee;Sung, Je Hoon;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.599-606
    • /
    • 2017
  • The effects of microbubble-oxygen physicochemical method for the removal of organic pollutants, nitrogen, and phosphorus contained in animal manure were investigated using a laboratory scale single reactor. The characteristics of used livestock manure were $36,894{\pm}5,024mg\;TCOD/L$, $22,031{\pm}2,018mg\;SCOD/L$, $4,150{\pm}35mg\;NH_4-N/L$, and $659{\pm}113mg\;PO_4-P/L$. It was confirmed that the amount of organic pollutants, nitrogen, and phosphorus removal was increased by the use of oxygen rather than air as the gas supplied with the microbubble, and by input of larger oxygen amount. When the oxygen was fed with 600 mL flow rate per minute, TCOD and phosphorus removal were 2.5 times and 5.6 times higher than those of air supplied. As the microbubble-oxygen reaction time was longer, the removal rate of nutrients increased gradually. The removal rates of ammonium and phosphorus reach to $41.03{\pm}0.20%$ and $65.49{\pm}1.39%$, respectively, after 24 hours. When the coagulation treatment method was applied to increase phosphorus removal rate from the effluent of microbubble-oxygen treatment, the phosphorus was removed up to 92.7%. However, the removal rate of organic pollutants (TCOD) was as small as $28.7{\pm}0.2%$ within the first 6 hours, and then the negligible removal of TCOD was recorded. This study suggests that microbubble-oxygen can be applied not only livestock manure but also aeration tank of various wastewater treatment plant, which can reduce the load on the associated unit process and produce stable high-quality effluent.

Characteristics of Nutrients Removal Process Activating Soil Microorganisms and Phosphorus Uptake under Anoxic Condition(II) (토양미생물을 활성화한 영양염류 제거 공정의 특성과 무산소 조건에서의 인 섭취(II))

  • Shin, Eung-Bae;Ko, Nam-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1757-1763
    • /
    • 2000
  • To consider the nutrient removal characteristics of BNR process activating soil microorganisms under the influence of DPB and to clear the characteristics of DPB under anoxic condition was investigated in the this study. The batch tests were conducted using sludge sampled from the BNR process activating soil microorganisms during operation periods. The results of this study were summarized as follows: - The DPB(Denitrifying Phosphorus removing Bacteria) performing denitrification and phosphorus uptake in the anoxic phase plays an important role in removing nitrogen and phosphorus in the BNR process activating soil microorganisms. - The PUR(Phosphorus Uptake Rate) of DPB in the anoxic phase was to be about 50% of PUR in the aerobic phase. - The DPB in the BNR process turned out to be increasing nutrient removal efficiency of BNR process.

  • PDF

Studies on the Nutritional Physiology of Soybean 6. Variatio of Potassium at the Various Position of Leaf on the Main Stem (대두의 영양생리학적 연구 6. 엽위별 가리의 변이)

  • 이순희
    • Journal of Plant Biology
    • /
    • v.17 no.3
    • /
    • pp.127-136
    • /
    • 1974
  • The effect of potassium metabolism on the soybean leaves was studied with comparison of other elements during the successive growing period. The results were as follows; 1. The percentage of potassium content showed remarkable increase not only in the first compound leaf at a stage which was growing vigorously and producing new leaves, but also in the fifth compound leaf at a stage which was taking a active metabolism of nitrogen and carbohydrate but not producing new leaves. However, the percentage of potassium content was decreased in the second compound leaf than in the first one. Such a result could be regarded as a potassium removal from mature leaves into immature and flowing out from stoma through respiration. During the pod-development the percentage of potassium content in the soybean leaf was decreased. 2. If nitrogen, phosphorus and potassium were added excessively in the nutrient solution, the percentage of potassium content in the soybean leaf had increased. The effects of these elements showed a remakable increase in the excessive plot of nitrogen than in that of phosphorus. At early stage the redtarded effect of phosphorus on the growth of soybean could be covered by potassium, however, at late stage it could not. The growth of soybean plant was much more inhibited by potassium, compared with nitrogen and phosphorus. New leaves could not be produced in the potassium deficient soybean plant after the third compound leaf. The normal growth of soybean plant could not be observed if only one element was excessively added to the culture solution, compared with the deficiency of other two elements.

  • PDF

Effect of Bioaugmentation on Performance of Intermittently Aerated Sewage Treatment Plant (Bioaugmentation이 간헐폭기 오수처리장치의 운전효율에 미치는 영향)

  • Jeong, Byung-Gon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.233-239
    • /
    • 2008
  • In order to improve reactor performance of existing sewage treatment plants, the feasibility of enhancing reactor performance by bioaugmentation using EM as bioaugmentation agent and the effects of anoxic: oxic time ratio on reactor performance were investigated. Continuous and intermittent aeration modes were compared under the 6 hr of HRT. Three different types of intermittent aeration modes, that is, 15 min, of anoxic:45 min of oxic, 30 min of anoxic: 30 min of oxic, and 45 min of anoxic: 15 min oxic respectively were chosen as test modes to study the effects of anoxic : oxic time ratios on reactor performance. The optimum anoxic: oxic time ratio was 30 min:30 min when considering simultaneous removal of organic, nitrogen and phosphorus. When applying EM into a continuously aerated reactor under the varying dosing rates of 50-200 ppm, reactor performance in terms of organic and nitrogen removal efficiencies was not improved at all. Nitrogen removal efficiency was increase when the EM dosing rate was increased. However the degree of improvement was slight when the EM was injected above 100 ppm. However optimum phosphorus removal was found at the EM dosing of 200 ppm. Thus it was found that optimum injection concentration of EM is 200 ppm. It is apparent that putting EM into a sewage treatment plant significantly affects the T-N removal efficiency of the reactor by enhancing denitrification efficiency especially in operational conditions of relatively long anoxic periods. To achieve reciprocal condition in a reactor with intermittent aeration it is necessary to enhance the reactor performance by EM injection. In the case of modifying existing continuously aerated reactors into intermittent aerated reactors, it is obvious that operating costs of aeration would be reduced by reducing aeration time when compared with existing conventional sewage treatment plants.

Treatment of stock wastewater by flocculation with Calsium and Magnesium salts (칼슘과 마그네슘염을 이용한 축산폐수의 응집처리)

  • 김재용
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.10-18
    • /
    • 2002
  • The changes of conventional clarification processe and an increase in treatment cost are required to meet increasingly stringent regulations related to the treated water quality. Although many enhanced coagulations have introduced to improve organic matter removal, the results to remove color, nitrogen and phosphorus as well as organic material have not been very efficient yet. In this context as new flocculation using calcium hydroxide and magnesum sulfate was carried out. The removal of waste matters such as SS, organic matter, COD, nitrogen and phosphorus contained in stock wastewater was carried out by using the combination of calcium hydroxide and magnesium sulfate. The flocculation was investigated as a function of coagulant dose, pH, mixing time, settling time and coagulant addition modes such as the sequential addition of the two coagulants and the simultaneous addition of them. The flocculation by the combination of calcium hydroxide and magnesium sulfate was compared with that by aluminum sulfate. The mechanism of flocculation was investigated as well. About 60% of COD in stock watewater was removed by flocculation with combination of calcium hydroxide and magnesium sulfate.

Enhancement of Sewage Treatment Efficiencies by Recirculation in Absorbent Biofilter System (재순환에 의한 흡수성 바이오필터 시스템의 오수처리효율 향상)

  • Kwun, Soon-Kuk;Cheon, Gi-Seol;Kim, Song-Bae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.69-76
    • /
    • 2005
  • An Absorbent Biofilter System (ABS) combined with the recirculation process was investigated for the feasible application in additional removing of organics (BOD, SS) as well as nutrients (TN, TP) from small Community wastewater in Korea. Polyurethane biofilter media with high porosity and large surface area were /used for the aerobic system. A part of treated wastewater was recirculated into the anoxic septic tank to promote removal of nutrients. The concentrations of BOD and SS of treated wastewater satisfied the regulations for small on-site wastewater treatment facility (10 mg/L) during the overall experimental period. The effluent concentrations of BOD and SS were decreased with enhancement of removal efficiencies of 95.7 and $96.7\%$. The nitrogen and phosphorus removal efficiencies by the recirculation increased to $52.9\%\;and\;43.2\%$ in average during the overall experimental period, respectively. With the improvement, these values were increased as much as additional 42 and $18\%$ compared with those of non-recirculation. The rates of nitrification and denitrification were enhanced showing $65\~77\%\;and\;42\~92\%$, respectively. The described process modification is a low cost and effective method of enhancing nitrogen and phosphorus removal, especially on existing systems without changing major design components of a treatment facility.

Evaluation of various nutrients removal models by using the data collected from stormwater wetlands and considerations for improving the nitrogen removal (인공습지에서 영양소 제거 설계모델 검토 및 질소제거 개선방안에 대한 고찰)

  • Park, Kisoo;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.90-102
    • /
    • 2017
  • In this study, various types of nutrient models were tested by using two tears's water quality data collected from the stormwater wetland in Korea. Based on results, most important factor influencing nitrogen removal was hydraulic loading rate, which indicates that surface area of wetland is more important than its volumetric capacity, and model proposed by WEF was found to give a least error between measured and calculated values. For the phosphorus, in case assuming a power relationship between rate constant and temperature, the best prediction result were obtained, but temperature was most sensitive parameter affecting phosphorus removal. In addition, denitrification was always a limiting step for the nitrogen removal in this particular wetland mostly due to the lack of carbon source and high dissolved oxygen concentration. In this paper, several alternatives to improve nitrogen removal, including proper arrangement and designation of wetland elements and use of floating plants or synthetic fiber mat to control oxygen level and to capture the algal particles were proposed and discussed.