• Title/Summary/Keyword: Nitrogen analysis

Search Result 2,628, Processing Time 0.031 seconds

Microstructure and Properties of High Nitrogen Sintered Stainless Steel

  • Pieczonka, Tadeusz;Stoytchev, Marin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.568-569
    • /
    • 2006
  • The use of the nickel free, high nitrogen stainless steel powder and nitriding during sintering of iron based materials have been shown as an alternative way to the conventional PM stainless steels containing nickel. Nitrogen as an alloying element for iron improves in an effective way the properties of sintered alloyed steels. The powder metallurgy route is a suitable way to introduce nitrogen into these alloys and, in particular, to produce high nitrogen (close to the solubility limit) stainless steels. The paper presents and discusses the nitriding behavior of nickel-free stainless steels produced by powder metallurgy method. Alloyed melt was atomized by nitrogen and in this way nitrogen was introduced into the powder. Further nitriding occurred during sintering in a nitrogen atmosphere. For comparison, compacts having the same composition as an alloyed powder were produced from elemental powders mixture. Sintering-nitriding behaviour of investigated materials has been controlled by dilatometry, chemical and X-Ray phase analysis and metallography. Mechanical properties of sintered compacts were also measured.

  • PDF

A Three-year Study on the Leaf and Soil Nitrogen Contents Influenced by Irrigation Frequency, Clipping Return or Removal and Nitrogen Rate in a Creeping Bentgrass Fairway (크리핑 벤트그라스 훼어웨이에서 관수회수.예지물과 질소시비수준이 엽조직 및 토양 질소함유량에 미치는 효과)

  • 김경남;로버트쉬어만
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.2
    • /
    • pp.105-115
    • /
    • 1997
  • Responses of 'Penncross' creeping bentgrass turf to various fairway cultural practices are not well-established or supported by research results. This study was initiated to evaluate the effects of irrigation frequency, clipping return or removal, and nitrogen rate on leaf and soil nitrogen con-tent in the 'Penncross' creeping bentgrass (Agrostis palustris Huds.) turf. A 'Penncross' creeping bentgrass turf was established in 1988 on a Sharpsburg silty-clay loam (Typic Argiudoll). The experiment was conducted from 1989 to 1991 under nontraffic conditions. A split-split-plot experimental design was used. Daily or biweekly irrigation, clipping return or removal, and 5, 15, or 25 g N $m-^2$ $yr-^1$ were the main-, sub-, and sub-sub-plot treatments, respectively. Treatments were replicated 3 times in a randomized complete block design. The turf was mowed 4 times weekly at a l3 mm height of cut. Leaf tissue nitrogen content was analyzed twice in 1989 and three times in both 1990 and 1991. Leaf samples were collected from turfgrass plants in the treatment plots, dried immediately at 70˚C for 48 hours, and evaluated for total-N content, using the Kjeldahl method. Concurrently, six soil cores (18mm diam. by 200 mm depth) were collected, air dried, and analyzed for total-N content. Nitrogen analysis on the soil and leaf samples were made in the Soil and Plant Analyical Laboratory, at the University of Nebraska, Lincoln, USA. Data were analyzed as a split-split-plot with analysis of variance (ANOVA), using the General Linear Model procedures of the Statistical Analysis System. The nitrogen content of the leaf tissue is variable in creeping bentgrass fairway turf with clip-ping recycles, nitrogen application rate and time after establishment. Leaf tissue nitrogen content increased with clipping return and nitrogen rate. Plots treated with clipping return had 8% and 5% more nitrogen content in the leaf tissue in 1989 and 1990, respectively, as compared to plots treated with clipping removal. Plots applied with high-N level (25g N $m-^2$ $yr-^1$)had 10%, 17%, and 13% more nitrogen content in leaf tissue in 1989, 1990, and 1991, respectively, when compared with plots applied with low-N level (5g N $m-^2$ $yr-^1$). Overall observations during the study indicated that leaf tissue nitrogen content increased at any nitrogen rate with time after establishment. At the low-N level treatment (5g N $m-^2$ $yr-^1$ ), plots sampled in 1991 had 15% more leaf nitrogen content, as compared to plots sampled in 1989. Similar responses were also found from the high-N level treatment (25g N $m-^2$ $yr-^1$ ).Plots analyzed in 1991 were 18% higher than that of plots analyzed in 1989. No significant treatment effects were observed for soil nitrogen content over the first 3 years after establishment. Strategic management application is necessary for the golf course turf, depending on whether clippings return or not. Different approaches should be addressed to turf fertilization program from a standpoint of clipping recycles. It is recommended that regular analysis of the soil and leaf tissue of golf course turf must be made and fertilization program should be developed through the interpretation of its analytic data result. In golf courses where clippings are recycled, the fertilization program need to be adjusted, being 20% to 30% less nitrogen input over the clipping-removed areas. Key words: Agrostis palustris Huds., 'Penncross' creeping bentgrass fairway, Irrigation frequency, Clipping return, Nitrogen rate, Leaf nitrogen content, Soil nitrogen content.

  • PDF

Relationship between Vegetation Composition and Dissolved Nitrogen in Wetlands of Higashi-Hiroshima, West Japan

  • Miandoab, Azam Haidary;Nakane, Kaneyuki
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.209-223
    • /
    • 2007
  • Twenty-four wetlands located in Higashi-Hiroshima City in West Japan were selected for this study in order to investigate both the relationship between aquatic plant composition and environmental conditions; and the relationship between changing land use patterns in the catchments and the concentration of different forms of nitrogen in the wetlands. The dominant and subdominant species which comprised the principal vegetation were determined based on a vegetation census conducted in each wetland during the growing season from June to August, 2006. The seasonal variations of water quality factors (pH, electrical conductivity, turbidity, dissolved oxygen, total dissolved solid, and temperature) and different forms of nitrogen such as nitrite, nitrate, ammonium, total nitrogen, dissolved organic nitrogen and dissolved inorganic nitrogen concentrations were analyzed as important indicators of water quality for the surface water of the wetlands. The surveyed wetlands were classified into three types (non-disturbed wetlands, moderately-disturbed wetlands and highly-disturbed wetlands), based on the degree of human disturbance to their catchment areas. An analysis of variance indicated that there was a significant difference among the wetland groups in the annual mean values of electrical conductivity, total dissolved solids, total nitrogen, nitrite, dissolved inorganic nitrogen and dissolved organic nitrogen. Classification of the wetlands into three groups has revealed a pattern of changes in the composition of plant species in the wetlands and a pattern of changes in nitrogen concentrations. A majority of the non-disturbed wetlands were characterized by Brasenia schrebi and Trapa bispinosa as dominant; with Potamogeton fryeri and Iris pesudacorus as sub-dominant species. For most of the moderately-disturbed wetlands, Brasenia schrebi were shown to be a dominant species; Elocheriss kuriguwai and Phragmites australis were observed as sub-dominant species. For a majority of the highly-disturbed wetlands, Typha latifolia and T. angustifolia were observed as dominant species, and Nymphea tetragona as the sub-dominant species in the study area. An analysis of land use and water quality factors indicated that forest area played a considerable role in reducing the concentration of nutrients, and can act as a sink for surface/subsurface nutrient inputs flowing into wetland water, anchor the soil, and lower erosion rates into wetlands.

Development of nitrogen and oxygen certified reference materials in 10 μmol/mol for the purity evaluation

  • Ahn, Byung Soo;Moon, Dong Min;Lee, Jin Bok;Kim, Jin Seog;Lee, Jin-Hong;Hong, Kiryong
    • Analytical Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.68-75
    • /
    • 2020
  • We have developed 10 μmol/mol nitrogen and oxygen certified reference materials (CRMs) in helium, as a SI-traceable gas standard for a quantifying of impurities in pure gases for the first time in Korea. The standard gas mixtures of nitrogen and oxygen were prepared in 5000 μmol/mol and sequentially were diluted to 250 μmol/mol and 10 μmol/mol according to the gravimetric preparation. In each dilution step, two cylinders of CRMs were prepared. The verification of internal consistency among the prepared gas mixtures was performed by using GC-TCD. The amount fractions and those expanded uncertainties (k = 2) of nitrogen and oxygen in the standard gas mixtures were (10.12 ± 0.08) μmol/mol and (10.18 ± 0.08) μmol/mol for nitrogen, and (9.88 ± 0.06) μmol/mol and (9.94 ± 0.06) μmol/mol for oxygen, respectively. We have conducted a purity assessment of two commercial helium gases using developed CRMs. As the results of the purity assessment, nitrogen and oxygen were detected by (1.66 ± 0.03) μmol/mol and (0.31 ± 0.02) μmol/mol, respectively, as the impurities in one of the pure helium.

Hydrochemical Characteristics and Nitrate-Nitrogen Contamination in Shallow Groundwater in Two Agricultural areas in Korea

  • Sul-Min Yun;Hang-Tak Jeon;Ji-Min Hwang;MoonSu Kim;HyunKoo Kim;Se-Yeong Hamm
    • Journal of the Korean earth science society
    • /
    • v.44 no.4
    • /
    • pp.291-306
    • /
    • 2023
  • Shallow groundwater in rural areas is primarily polluted by agricultural activities. Nitrate-nitrogen is an indicator of artificial pollution. In this study, the hydrochemical characteristics and nitrate-nitrogen pollution of shallow groundwater were examined in two agricultural villages (Hyogyo-ri and Sinan-ri) in Chungcheongnam-do Province, Korea. Physicochemical quality analysis of shallow groundwater and stream water in the field, and chemical analysis in the laboratory were conducted from July 2020 to October 2021. In Hygyo-ri and Sinan-ri villages, shallow groundwater mainly belonged to the Ca-Cl, Ca-H CO3, Na-HCO3, and Na-Cl types, whereas stream water predominantly belonged to the Ca-HCO3 type. The nitrate-nitrogen concentration in shallow groundwater varied depending on the season, displaying an increased concentration of nitrate-nitrogen in the dry season compared to the rainy season. Stream water may be influenced by runoff into villages from the surrounding area, although both shallow groundwater and stream water are affected by artificial pollution. In addition, the nitrate-nitrogen concentration in stream water was lower than that in shallow groundwater.

Physiological and Spectroscopic Changes of Rice by Nitrogen Fertilization Conditions

  • Jung-Il Cho;Dongwon Kwon;Hoejeong Jeong;Wan-Gyu Sang;Sungyul Chang;Jae-Kyeong Baek
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.106-106
    • /
    • 2022
  • An appropriate amount of nitrogen fertilizer input during rice cultivation is essential for rice growth, quality control, and reduction of greenhouse gases in paddy fields. Therefore, it is necessary to develop a technology that can check whether an appropriate amount of fertilizer is applied in paddy fields. In this study, we tried to derive a method for diagnosing nitrogen fertilization level using spectroscopic diagnosis, physiological analysis, and molecular indicator genes. Nitrogen fertilization treatment was performed in a greenhouse by dividing into five treatment conditions: no fertilization (N0), low fertilization (N0.5), standard fertilization (N1.0), excessive fertilization (N1.5), and double fertilization (N2.0), respectively. Growth characteristics analysis was investigated by nitrogen fertilization conditions and growth stages, and the height of the canopy was analyzed using a laser scanner. Physiological and spectroscopic analyses were performed by analyzing chlorophyll and sugar contents and measuring SPAD and leaf spectrometer on rice leaves. In addition, real-time PCR experiment was performed to check the relative expression levels of several known nitrogen metabolism related genes. These results suggest that spectroscopic techniques can be helpful in diagnosing the level of nitrogen fertilization in rice paddy fields.

  • PDF

Exergy Analysis and Evaluation of Cryogenic Nitrogen Production Process (초저온 질소생상공정의 Exergy 해석 및 평가)

  • 용평순;뭉홍만;이성철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.169-172
    • /
    • 1999
  • The exergy method is used for analysis and evaluation of the cryogenic nitrogen production process which is operated by expansion turbene and liquid nitrogen. The exergy loss and thermodynamic effeciency are calculated for the each process. Also the operating efficiency and the exergy distribution are examined for each unit of proces. The optimal conditions to minimize the exergy loss of nitrogen column are found that nitrogen recovery ratio is maximum and operating pressure is 5.0 kg/cm2g. The exergy method can be used to design a plant and to evaluate its process.

  • PDF

A Study on Nitrogen Intake and Excretion in Young Korean Adult Women on Normal Diet (정상식이를 섭취하는 여대생들의 질소 섭취 및 배설에 관한 연구)

  • 김주연
    • Journal of Nutrition and Health
    • /
    • v.20 no.2
    • /
    • pp.90-103
    • /
    • 1987
  • A study was conducted to measure nitrogen intake and excretion in young korean women on their normal diet and leading normal activity level. Dietary survey by food record, fecal and urinary samples were collected for 3 days in 19 healthy female college students in Korea. On one of the 3 days, duplicate of one-day diet was collected from each subjects. Mean daily intakes of energy and protein were calculated from food recorded. Duplicate diet samples and pooled fecal samples were analyzed for N content. Pooled urine samples were analyzed for total N, urea N, and creatinine content. Apparent N absorption, apparent N balance and urea N/creatinine N were calculated to evaluate protein nutritional status. The results obtained are summarized as following ; 1) Accordingly to food record, mean daily intakes of energy, protein, carbohydrate and far were 1535.2 $\pm$53.78Kcal, 55.95$\pm$2.97g(total nitrogen 8.95$\pm$0.45g), 254.13$\pm$10.31g and 39.24$\pm$2.76 g, providing 14.6%, 66.2%, 19.2% of total energy respectively. 2) Nitrogen intake by chemical analysis was 7.16$\pm$0.31g/day (protein 44.75$\pm$1.94kg/day) providing 82.39$\pm$4.58% of nitrogen intake by food record. The difference of total nitrogen intake between food record and chemical analysis in diets was significant(p<0.05). 3) Mean daily fecal nitrogen excretion was 1.38$\pm$0.10g and then mean apparent digesbility of protein was 80.53$\pm$5.21%. 4) Mean daily urinary nitrogen excretion, urea N excretion and creatinine excretion were 6.03$\pm$0.30g, 4.52$\pm$0.22g, and 0.88$\pm$0.04g respectively. Urinary urea nitrogen was 75.2$\pm$1.38% of total urinary nitrogen excretion and urinary nitrogen was 85.4$\pm$3.56% of total nitrogen intake by chemical analysis. 5) Mean urea N/creatinine N ration was 14.01$\pm$0.77. 6) Mean nitrogen balance was -0.244$\pm$0.33g/day. From the above results, it is concluded that the subjects in this study seem to be in marginal protein nutritional status and therefore should increase dietary protein intake.

  • PDF

A Study on the Volatile Organic Compounds Analysis Method for Visible Light-Responsive Photocatalyst Treated Vehicle Interior Materials (가시광촉매가 처리된 자동차 내장재의 VOC 분석방법에 대한 연구)

  • Choi, Sei Young
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.221-224
    • /
    • 2013
  • In this study, VOC analysis method of vehicle interior materials and parts treated to visible-light responsive photocatalyst was tested by sample bag filled with air instead of nitrogen. As a result, when analyzed VOC of vehicle interior materials and parts, sample bag filled with the nitrogen was not confirmed of effect reducing VOCs and formaldehyde. However, VOCs and formaldehyde of sample bag that was filled with air instead of nitrogen, decreased significantly. Reaction effect for visible light-responsive photocatalyst was confirmed that sample bag of vehicle interior materials and parts should be filled with air instead of nitrogen.

Optimizing the Performance of Three-Dimensional Nitrogen-Doped Graphene Supercapacitors by Regulating the Nitrogen Doping Concentration

  • Zhaoyang Han;Sang-Hee Son
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • Nitrogen-doped graphene was synthesized by a hydrothermal method using graphene oxide (GO) as the raw material, urea as the reducing agent and nitrogen as the dopant. The morphology, structure, composition and electrochemical properties of the samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis, electrical conductivity and electrochemical tests. The results show that urea can effectively reduce GO and achieve nitrogen doping under the hydrothermal conditions. By adjusting the mass ratio of raw materials to dopants, the graphene with different nitrogen doping contents can be obtained; the nitrogen content range is from 5.28~6.08% (atomic fraction percentage).When the ratio of dopant to urea is 1:30, the nitrogen doping content reaches a maximum of 6.08%.The supercapacitor performance test shows that the nitrogen content prepared by the ratio of 6.08% is the best at 0.1 A·g-1. The specific capacitance is 95.2 F·g-1.