• Title/Summary/Keyword: Nitrogen additional fertilizer

Search Result 55, Processing Time 0.018 seconds

Greenhouse Gas Emissions from Soils Amended with Biochar (바이오차르 토양투입에 따른 온실가스 발생 변화 연구)

  • Yoo, Gayoung;Son, Yongik;Lee, Seung Hyun;Yoo, Yena;Lee, Sang Hak
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.471-477
    • /
    • 2013
  • Biochar amendment to agricultural soil is regarded as a promising option to mitigate climate change and enhance soil quality. It could sequester more carbon within the soil system and increase plant yield by changing soil physicochemical characteristics. However, sustainable use of biochar requires comprehensive environmental assessment. In this sense, it is important to measure additional greenhouse gas emission from soils after biochar addition. We investigated emissions of $CO_2$, $N_2O$, and $CH_4$ from incubated soils collected from rice paddy and cultivated grassland after amendment of 3% biochar (wt.) produced from rice chaff. During incubation, soils were exposed to three wet-dry cycles ranging from 5~85% soil gravimetric water content (WC) to investigate the changes in effect of biochar when influenced by different water levels. The $CO_2$ emission was reduced in biochar treatment compared to the control at WC of 30~70% both in rice paddy and grassland soils. This indicates that biochar could function as a stabilizer for soil organic carbon and it can be effective in carbon sequestration. The $N_2O$ emission was also reduced from the grassland soil treated with biochar when WC was greater than 30% because the biochar treated soils had lower denitrification due to better aeration. In the rice paddy soil, biochar addition resulted in decrease in $N_2O$ emission when WC was greater than 70%, while an increase was noted when WC was between 30~70%. This increase might be related to the fact that available nutrients on biochar surface stimulated existing nitrifying bacterial community, resulting in higher $N_2O$ emission. Overall results imply that biochar amendment to agricultural soil can stabilize soil carbon from fast decomposition although attention should be paid to additional $N_2O$ emission when biochar addition is combined with the application of nitrogen fertilizer.

Effects of Application Method of Pig Compost and Liquid Pig Manure on Yield of Whole Crop Barley (Hordeum vulgare L.) and Chemical Properties of Soil in Gyehwa Reclaimed Land (계화간척지에서 돈분뇨 퇴.액비 시용이 청보리 (Hordeum vulgare L.) 수량 및 토양화학성에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Baik, Nam-Hyun;Lee, Jung-Jun;Oh, Young-Jin;Park, Tail-Il;Kim, Kee-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.353-360
    • /
    • 2011
  • In order to develop the application method of pig compost (PC) and liquid manure (LM) for whole crop barley cultivation, experiments were conducted at Munpo series (coarse loamy, mixed, nonacid, mesic family of Typic Fluvaquents) soil in Gyehwa-reclaimed land, six plots, a LM applied rate as N% ; non-application, chemical fertilizer (CF)100, 100, 50+50, 50+CF50 and (PC30+LM40)+LM50 as basal and additional fertilizer. $NO_3^-$-N content in soil was decreased as along with the growth of plant, highest in LM100% as basal fertilization at early growth stage and highest in (PC30%+LM40%)+LM40% and CF100% at last growth stage. Amount of $NO_3^-$-N and $NH_4^+$-N in soil was high in (PC30%+LM40%)+LM40% and CF100% of top soil but in subsoil significant difference was little in all treatment. Amount of OM, $A_V.P_2O_5$, T-N, exchangeable Ca and Na in soil was higher (PC30%+LM40%)+LM40% than non-application after harvest. Amount of nutrient uptake in plant was higher in CF100% and split application of LM than LM 100% application. Nitrogen utilization rate was in the order of CF100% >LM50%+LM50%=LM50%+CF50%>(PC30%+LM40%)+LM40% >LM100%. The yield of whole crop barley in (PC30%+LM40%)+LM40% and CF100% was 3.2 times more than in non-application ($309kg\;10a^{-1}$). Feed values such as crude protein and TDN was increased 1.0% ~ 1.4% in LM as split application than basal 100% treatment. Accordingly, in order to increase yield of a whole crop barley with application PC+LM in reclaimed land treat split application rather than to treat LM 100% into the land.

Effect of Band Spot Fertilization for Reduction of Additional Application in Plastic Film Mulching Cultivation of Onion(Allium cepa L.) (양파 비닐피복 재배에서 추비 절감을 위한 토중시비 효과)

  • Yang, Chang-Hyu;Ryu, Chul-Hyun;Shin, Bok-Woo;Kang, Seung-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.102-108
    • /
    • 2006
  • It is very important to improve fertilizer use efficiency for the saving of fertilizers and for environmental purposes as well. However, there was no effective ways for the fertilization in the mid of growth under the plastic film mulching cultivation so far. For this, a Band Spotty Fertilization (BSF) machine was developed recently. So, we tried to establish a low input fertilization technique using this BSF machine in the vinyl mulching cultivation of onion (Allium cepa L.). Fertilization efficiency, soil properties, and crop yield were examined and compared among treatments from 2000 to 2001. The content of exchangeable K in soils were higher after fertilization but that of available $P_2O_5$ was lower than before the experiment in all plots. The content of nitrate-N was highest at the early growth stage, and higher in BSF plots than that of conventional fertilization (CF). BSF plot showed higher growth rate, and uptake amount of nitrogen of onion by 59-69% than that of CF. N use efficiency in BSF was higher in the order of two time-split application, one time-split application, and three time application. K use efficiency was high 13-17% BSF plots than that in CF($63kg\;ha^{-1}$) plots. The amount of residual N in soils was high by 8-14% in BSF plots compared to that in CF plots, and the loss of N was lowered 26-34% by BSF. Also, the amount of residual K in soils was high by 13-18% and the loss of K was low by 29-31% in BSF plots compared to that in CF plots. The yield of onions increased by 7-13% by BSF due to increased diameter and weight of bulbs. As the results, N fertilization efficiency increased by 22-42% by BSF.

Situation of Fertilizer Industry in Korea (비료산업(肥料産業)의 현황(現況)과 문제점(問題点))

  • Lee, Yun Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.1
    • /
    • pp.34-48
    • /
    • 1982
  • 1. Production and consumption of chemical fertilizers in Korea could be divided into five different phases of total imports, setting up fertilizer plants, self-sufficiency in production, net export, and diversification in compound fertilizers. Currently the nation has production capacity of 800 thousand M/T of nitrogen, 400 thousand M/T of phosphate ($P_2O_5$) and 200 thousand M/T of potash ($K_2O$). 2. Yearly consumption increased every year, since 1964, 28,000 M/T N, 7,700 M/T $P_2O_5$, and 7,500 M/T $K_2O$ until 1972, when the increase jumped by eight times for $P_2O_5$ and seven times for $K_2O$ for the following 3 years in anticipation of their short supply. Now total consumption has been more or less stabilized at the level of 450 thousand M/T N, 220 thousand M/T $P_2O_5$ and 180 thousand M/T $K_2O$ for the last 7 years. 3. Current operation rate of fertilizer plants is around 80% throughout the whole industry, after going through several different levels depending on demand at times. 4. Fertilizer export started in 1967 and reached a peak of 150 thousand nutrient ton in 1972, about 20% of total production, before temporarily stopping due to over-demand for next three years. The export resumed again in 1976 rise to the all time high of 670 thousand nutrient ton in 1980, almost half of total production, and then started to decline due to higher price of petroleum since then. 5. The decline in fertilizer export appears to be accelerated because several countries, in South-Eastern Asia, traditional export market for Korean fertilizers, started to build their own plants, since 1980, based on their raw materials of especially petroleum. 6. Current consumption in Korea is about 30 nutrient Kg per 10a, equivalent to that in Western European countries, partly due to new high-yielding rice varieties and extensive cultivation of fruit trees and vegetables. Additional fertilizer demand in future can be anticipated in reclaimed land for growing grass and forestry.

  • PDF

Effects of Crotalaria Incorporation into Soil as a Green Manure on Growth of Strawberry and Inorganic Soil Nitrogen Level (크로탈라리아의 토양환원이 토양의 무기태 질소농도 및 딸기의 생육에 미치는 영향)

  • Lim, Tae-Jun;Park, Jin-Myeon;Lee, Seong-Eun;Park, Young-Eun;Kim, Ki-In
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.578-586
    • /
    • 2016
  • In this study, we evaluated the effects of soil incorporation of crotalaria as a green manure on the growth and yields of 'Seolhyang' strawberry and inorganic soil nitrogen levels in a greenhouse. Four different N treatments were used, as follows: zero N fertilizer (control), crotalaria, crotalaria with 50% urea, and 100% urea. The recommended N requirement (100% urea) for strawberry was $86kgN{\cdot}ha^{-1}$ and 50% of the recommended N (50% urea) was $43kgN{\cdot}ha^{-1}$. Crotalaria was sowed on June $17^{th}$, 2011 and cultivated for 37 days. The amount of N supply from soil incorporation of crotalaria was $104kgN{\cdot}ha^{-1}$. Strawberry was planted on September $9^{th}$, 2011 and cultivated for 255 days after planting. The concentrations of soluble solids and acidity of strawberry fruits for the crotalaria treatment were higher than for the crotalaria with 50% urea and 100% urea treatments. On the other hand, the growth and yield of strawberry was the highest for the crotalaria with 50% urea and 100% urea treatments, followed by the crotalaria treatment, and the lowest for the control. Soil inorganic N concentration for the crotalaria treatment was continuously decreased to $24mg{\cdot}kg^{-1}$ at the end of the growing season, while crotalaria with 50% urea and 100% urea treatments maintained an inorganic N concentration that ranged from 35 to $50mg{\cdot}kg^{-1}$. These results indicate that the amount of N supply from soil incorporation of crotalaria may not be enough because strawberry yield was lower than for other N treatments. Therefore, additional nitrogen, such as 50% urea after soil incorporation of crotalaria, is recommended.