• Title/Summary/Keyword: Nitrogen Recycling

Search Result 267, Processing Time 0.023 seconds

Nitrogen removal, nitrous oxide emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes

  • Sun, Yuepeng;Xin, Liwei;Wu, Guangxue;Guan, Yuntao
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.107-116
    • /
    • 2019
  • Nitrogen removal, nitrous oxide ($N_2O$) emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes were investigated. Two sequencing batch reactors (SBRs) and two continuous-flow multiple anoxic and aerobic reactors (CMRs) were operated under high dissolved oxygen (DO) (SBR-H and CMR-H) and low DO (SBR-L and CMR-L) concentrations, respectively. Nitrogen removal was enhanced under CMR and low DO conditions (CMR-L). The highest total inorganic nitrogen removal efficiency of 91.5% was achieved. Higher nitrifying and denitrifying activities in SBRs were observed. CMRs possessed higher $N_2O$ emission factors during nitrification in the presence of organics, with the highest $N_2O$ emission factor of 60.7% in CMR-L. SBR and low DO conditions promoted $N_2O$ emission during denitrification. CMR systems had higher microbial diversity. Candidatus Accumulibacter, Nitrosomonadaceae and putative denitrifiers ($N_2O$ reducers and producers) were responsible for $N_2O$ emission.

Nitrogen Utility during the Population Development with Different Clipping Treatments on Italian Rye Grass Field (Italian Rye Grass 초지군락의 청예처리빈도에 따른 생산성과 질소이용성)

  • 송승달
    • Journal of Plant Biology
    • /
    • v.22 no.3
    • /
    • pp.63-69
    • /
    • 1979
  • The plant growth and net production, the nitrogen uptake and recycling, the nitrogen mobility and allocation to each organ, and the nitrogen utility from the Italian rye grass field during the population development were analyzed in comparison with different clipping treatments. The maximum dry matter standing crop and nitrogen quantity of harvest increased significantly, however, the annual amounts of dry matter and nitrogen assimilation showed little variations with increasing clipping frequencies. Plants treated with frequent clippings allocated relatively more nitrogen to leaves and less to roots during the experimental period. The amount of recycling of nitrogen decreased considerably due to frequent clippings. The annual averages of nitrogen utility indices changed in inverse relation to the nitrogen availability; such as 63, 58, 44 and 35 for C, A, M and J plots, respectively.

  • PDF

Quantitative Comparison of Diversity and Conformity in Nitrogen Recycling of Ruminants

  • Obitsu, T.;Taniguchi, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.440-447
    • /
    • 2009
  • Domestic ruminant animals are reared in diverse production systems, ranging from extensive systems under semi-arid and tropical conditions with poor feed resources to intensive systems in temperate and cold areas with high quality feed. Nitrogen (N) recycling between the body and gut of ruminants plays a key role in the adaptation to such diverse nutritional conditions. Ammonia and microbial protein produced in the gut and urea synthesized in the liver are major players in N-recycling transactions. In this review, we focus on the physiological factors affecting urea production and recycling. Sheep and buffalo probably have higher abilities to reabsorb urea from the kidney compared with cattle. This affects the degree of urea-N recycling between the body and gut at both low and high N intakes. The synthesis and gut entry of urea also differs between cattle bred for either dairy or beef production. Lactating dairy cows show a higher gut entry of urea compared with growing cattle. The synthesis and recycling of urea dramatically increases after weaning, so that the functional development of the rumen exerts an essential role in N transactions. Furthermore, high ambient temperature increases urea production but reduces urea gut entry. An increase in total urea flux, caused by the return to the ornithine cycle from the gut entry, is considered to serve as a labile N pool in the whole body to permit metabolic plasticity under a variety of physiological, environmental and nutritional conditions.

Estimation of Optimal Operation Conditions in Step Feed Processes Based on Stoichiometric Nitrogen Removal Reactions

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.6-9
    • /
    • 2011
  • Step feed process was analyzed stoichiometrically for the optimal operation conditions in this study. In case of optimal operation conditions, minimum R (sludge recycling) value, r (internal recycling ratio) value, and n (influent allocation ratio) value for the step feed process to acquire the maximum TN removal efficiency were identified by theoretical analysis. Maximum TN removal efficiency, based on stoichiometric reaction, can be obtained by controlling n value for the step feed process.

Assessment of Farm-Gate Nitrogen Balance of Organic Hanwoo Farms at Different Recycling Farming Types (유기 한우 사육농장의 순환 유형별 질소 수지 평가)

  • Lim, Jin-Soo;Choi, Deog-Cheon;Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.32 no.2
    • /
    • pp.247-265
    • /
    • 2024
  • The aim of the study was to assess whole farm nitrogen (N)-balance in organic Hanwoo farms of different recycling types. N input, output and within-farm N flows were calculated as a farm-gate balance on 12 organic Hanwoo farms. The observed farms were divided into three groups: as (a) recycling farms, with a forage cultivation area (more than 0.1 ha), (b) semi-recycling farms (0.01-0.1 ha) and (c) with non-recycling farms (less than 0.01 ha). The self-sufficiency forage crops for animal feed was 44.4, 15.0, and 4.2% in recycling farms, semi-recycling farms and non-recycling, respectively. The recycling rate of compost was 98.8, 63.8, and 20.6% in recycling farms, semi-recycling farms and non-recycling farms, respectively. The annual farm-gate N surplus (input-output) per head was 42, 47, and 55 kg in recycling farms, semi-recycling farms and non-recycling, respectively. The mean annual N balance per head in recycling farms was less than 28% of non-recycling. The field nitrogen budgets showed 234, 1,161, and 5,476 kg N ha-1 year-1 in recycling farms, semi-recycling farms and non-recycling farm, respectively. N-surplus reductions of in recycling farms was 5-23 times lower compared to the semi-recycling farms and non-recycling farm. The nitrogen use efficiency (NUE) was 54, 36, and 29%, in recycling farms, semi-recycling farms, and non-recycling farm, respectively. Results showed that compost recycling through crop-livestock recycling farm is significant in the contributing to circulating N balance and to greater efficiency and productivity. The recycling organic Hanwoo farm had the low N balance and the high NUE. To reduce the N balance, we considered how to increase the amount of recycling by using self production compost. The self production forage crops was mainly considered to reduce the N balance by decreasing input of purchased feeds and increasing crop production and recycling rate of compost.

Stoichiometric Study for Nitrogen Removal in Anoxic-oxic Process (무산소-산소 공정에서 양론적 질소제거 연구)

  • Lee, Byung-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1222-1227
    • /
    • 2005
  • Optimal sludge recycling ratio for maximum total nitrogen(TN) removal efficiency was calculated stoichiometrically using nitrification and denitrification reaction with given influent water qualities in anoxic-oxic process which was one of the popular nitrogen removal system. The water quality items for stoichiometric calculation were ammonia, nitrite, nitrate, alkalinity, COD, and dissolved oxygen which could affect nitrification and denitrification. Optimal sludge recycling ratio for maximum TN removal efficiency was expressed by those five influent water qualities. TN concentration calculated stoichiometrically had kept good relationship with reported TN concentration in each tank and final effluent. In addition, it was possible to expect the TN concentration in final effluent by stoichiometric calculation within ${\pm}5.0\;mg/L$.

Effect of the Recycling of Non-condensable Gases on the Process of Fast Pyrolysis for Palm Wastes (미응축가스 재순환에 따른 팜 부산물 급속열분해 반응 공정 특성)

  • Oh, Changho;Lee, Jang Hoon
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.233-238
    • /
    • 2018
  • Bio-oil is produced by the fast quenching of hot vapor produced by fast pyrolysis of biomass in an inert atmosphere. Nitrogen is used as carrier gas to control the concentration of oxygen less than 3%. The consumption of nitrogen should be increased with increasing process size, and leading to increasing of facility and operating costs due to nitrogen charge. The effects of the recycling of non-condensable gases on the fast pyrolysis, bio-oil yield and quality, and nitrogen consumption have systematically investigated to see the possibility of these results in fast pyrolysis process of palm residue.

Improvement of Organics and Nitrogen Removal by HRT and Recycling Rate in Air Lift Reactors (공기부상반응조에서 체류시간과 반송율에 의한 유기물질 및 질소제거 향상에 관한 연구)

  • Kim, Jin-Ki;Yu, Sung-Whan;Lim, Bong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • This study was performed to evaluate the air lift reactors (ALR) by variations of HRT and recycling rate. Air lift reactor was composed of bioreactor and clarifier above it. To remove organic matters and nitrogen through the formation of microbic film and filtration, bio-filter reactors were filled with clay, glass, bead, waste plastic, respectively. Influent wastewater was fed to biofilter reactor, and effluent wastewater from bio-filter reactor was injected ALR again, instead of adding external carbon source. Effluent BOD concentration was satisfied with lower than 10 mg/L in recycling rate 100% regardless of the variation of HRT and the kinds of media materials. In HRT 4 hr, recycling rate 100%, BOD removal efficiency rate was from about 85 to 90%, COD removal efficiency rate was higher than 90%. Effluent TN concentration was satisfied with less than 20 mg/L, if HRT was maintained by over than 6 hr regardless of recycling rate and media materials. Over than HRT was 4 hr, microbes concentration in air lift reactor was maintained over than 2,500 mg/L constantly, not sensitive to environmental condition, and organic removal was effective as it was higher.

A Study on Recycling Capacity Assessment of Livestock Manure (가축분뇨의 자원화 용량 평가에 관한 연구)

  • Ahn, Tae Woong;Choi, I Song;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.5
    • /
    • pp.311-320
    • /
    • 2008
  • Reusing livestock manure have various advantages in securing soil organic resources, and since the costs needed for converting them into liquefied fertilizers are relatively moderate compared to normal treatment, such methods are necessary. In this study, the Recycling Capacity Assessment of Gyeonggi-do was carried out by comparing between the fertilizer demands for specific crops based on the cultivation areas and the amount of fertilizer resources that are generated from livestock manure. From this assessment, the possibility of obtaining resources by converting livestock manure into fertilizers were evaluated. The amount generated of Livestock Manure in Gyeonggi-do were evaluated by applying the emission units to the number of livestock manure. And from the amount generated of Livestock Manure, the amount of fertilizer produced from Livestock Manure were calculated by using the fertilizer a component rate. When considering the amount of fertilizer produced from Livestock Manure based on the type of livestock, N 6,626 ton/year, $P_2O_5$ 1,824 ton/year, $K_2O$ 4,480 ton/year were produced from milk cow manure, while N 5,247 ton/year, $P_2O_5$ 2,772 ton/year, $K_2O$ 2,879 ton/year, were produced from beef cattle manure. N 14,924 ton/year, $P_2O_5$ 7,205 ton/year, $K_2O$ 6,750 ton/year were produced from pigs and N 12,651 ton/year, $P_2O_5$ 4,458 ton/year, $K_2O$ 5,542 ton/year were produced by chickens. So the total amount of fertilizers that can be obtained from livestock manure were 3,668 ton/year Nitrogen, 16,259 ton/year phosphate and 19,651 ton/year kalium. And the total fertilizer demands in Gyeonggi-do were Nitrogen 27,200 ton/year, Phosphate 8,853 ton/year, and kalium 13,211 ton/year respectively. Nitrogen which had higher demands than production quantities were considered as limitation factors in crop growth. So the Recycling Capacity Assessment was carried out mainly based on Nitrogen. Since the Nitrogen quantities that can be provided by recycling livestock manure were 3,532 ton/year lesser than the Nitrogen demands, it is estimated that it would be desirable to convert livestock manure into resources. But in order to properly convert the entire livestock manure into organic resources, the seasonal situation that effects the nitrogen demands of crops along with the regional effects due to the industrial structures should be seriously analyzed. In addition, a system that can effectively produce and manage fertilizer should be established.