• Title/Summary/Keyword: Nitrogen Oxides

Search Result 458, Processing Time 0.028 seconds

Improvement of the Architectural Environment by Applying Photocatalyst Building Materials and Ventilation Systems (광촉매 건축자재와 환기시스템 적용에 따른 건축 환경 개선 방안)

  • Yong Woo Song;Seong Eun Kim;Se Hyeon Lim;Sung Jin Sim
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.103-110
    • /
    • 2023
  • People who spend most of their day indoors are continuously exposed to internally and externally generated indoor pollutants. According to a 2022 report from the World Health Organization (WHO), air pollution is the cause of more than 7 million deaths annually worldwide, emphasizing the seriousness of indoor air pollutants. Air pollutants include nitrogen oxides (NOx), formaldehyde (HCHO), and volatile organic compounds (VOCs), which have serious effects on the human body. Photocatalyst is a material that can remove these indoor air pollutants. Photocatalysts not only have the ability to remove dust precursors, but also have antibacterial, sterilizing, and deodorizing functions, making them effective in improving indoor air quality. This study suggests areas and methods in which photocatalysts can be applied to buildings. Fields of application include interior and exterior construction materials such as concrete, as well as organic paints and ventilation devices. If appropriate utilization plans are developed, it may be possible to improve the built environment through reduced indoor and outdoor pollutant levels.

A Study on Exhaust Gas Characteristics of Heavy-duty Diesel Engines through Actual Vehicle Application of Non-influenced Temperature Condition Type Active Regeneration Method (온도조건 비영향형 복합재생방식 DPF의 실차적용을 통한 대형디젤기관의 배출가스 특성 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.53-59
    • /
    • 2024
  • Cars are one of the main causes of air pollution in large cities, and 34.6% of domestic air pollution emissions come from mobile sources, of which cars account for 69.6%. In particular, the importance of nitrogen oxides (NOx) and particulate matter (PM), which are major pollutants in diesel vehicles, is increasing due to their high contribution to emissions. Therefore, in this study, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation was solved by applying a complex regeneration DPF that is not affected by temperature conditions to large diesel vehicles with higher driving time and engine displacement than small and medium-sized vehicles. And the feasibility of application to large diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the reduction efficiency test on the actual vehicle durability product, PM showed a reduction efficiency of 84% to 86%, and the reduction efficiency of gaseous substances showed a high reduction efficiency of over 90%. The actual vehicle applicability test was completed with three driving patterns: village bus vehicle, police car, and road-going construction equipment vehicle, and no device problems occurred until the end of the test. Both load and no-load smoke measurement results showed a smoke reduction efficiency of over 96%.

Evaluation of NOx Removal Efficiency of Photocatalytic Concrete for Road Structure (도로구조물 적용을 위한 광촉매 콘크리트의 질소산화물(NOx) 제거효율 평가)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Kyung Bae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.49-58
    • /
    • 2014
  • PURPOSES : In areas of high traffic volume, such as expressway across large cities, the amount of nitrogen oxides (NOx) emitted into the atmosphere as air pollution can be significant since NOx gases are the major cause of smog and acid rain. Recently, the importance of NOx removal has arisen in the world. Titanium dioxide ($TiO_2$), that is one of photocatalytic reaction material, is very efficient for removing NOx. The NOx removing mechanism of $TiO_2$ is the reaction of solar photocatalysis. Therefore, $TiO_2$ in road structure concrete need to be contacted with ultraviolet rays (UV) to be activated. In general, $TiO_2$ concretes are produced by replacement of $TiO_2$ as a part of concrete binder. However, considerable portion of $TiO_2$ in concrete cannot contact with the pollutant in the air and UV. Therefore, $TiO_2$ penetration method using the surface penetration agents is attempted as an alternative in order to locate $TiO_2$ to the surface of concrete structure. METHODS : This study aimed to evaluate the NOx removal efficiency of photocatalytic concrete due to various $TiO_2$ application method such as mix with $TiO_2$, surface spray($TiO_2$ penetration method) on hardened concrete and fresh concrete using surface penetration agents. The NOx removal efficiency of $TiO_2$ concrete was confirmed by NOx Analyzing System based on the specification of ISO 22197-1. RESULTS : The NOx removal efficiency of mix with $TiO_2$ increased from 11 to 25% with increasing of replacement ratio from 3 to 7%. In case of surface spray on hardened concrete, the NOx removal efficiency was about 50% due to application amount of $TiO_2$ with surface penetration agents as 300, 500 and 700g/m2. The NOx removal efficiency of surface spray on fresh concrete due to all experimental conditions, on the other hand, which was very low within 10%. CONCLUSIONS : It was known that the $TiO_2$ penetration method as surface spray on hardened concrete was a good alternative in order to remove the NOx gases for concrete road structures.

Seasonal Nitrogen Oxides Improvement due to On-road Mobile Air Pollution Source Emission Control Plan in Seoul Metropolitan Area (도로이동오염원 대기오염 저감대책에 의한 수도권 지역 계절별 질소산화물 개선효과)

  • Kim, Yoo Jung;Jeong, Hye-Seon;Kim, Suhyang;Ma, Young-Il;Lee, Woo-Keun;Kim, Jeongsoo;Sunwoo, Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.269-278
    • /
    • 2016
  • In order to improve air quality in the Seoul Metropolitan Area (SMA), the "Special Act on Seoul Metropolitan Air Quality Improvement" has been enforced since 2005. The strategy has resulted in some reduction of air pollution, but there has not been much research into the quantitative impact analysis of each separate preventive countermeasure. Therefore, we analyzed nitrogen oxide reduction resulting from implementation of the emission control plan for on-road mobile sources. The MM5-SMOKE-CMAQ model system was employed for air quality prediction. Reduced $NO_x$ emissions for SMA was 16,561 ton, 4.7% of reduction rate, in 2007. One countermeasure, tighter acceptable standards for manufacturing vehicles, dominated other countermeasures for effective $NO_x$ emission control. Large spatial differences in reduced emissions, those for Seoul being twice that of Incheon and Gyeonggi, showed greater $NO_x$ emission reduction impact in the heart of the metropolitan complex. The $NO_2$ concentration decreased by 0.60 ppb (2.0%), 0.18 ppb (1.5%), and 0.22 ppb (1.7%) in Seoul, Incheon, and Gyeonggi, respectively. Concentration decreases in spring and winter were larger, 1.5~2.0 times, than summer and fall. However, the $NO_2$ reduction impact did not correspond directly to local $NO_x$ emission controls in the city area because of the natural flow and dispersion, both urban and downwind.

Trend on the Recycling Technologies for Waste Catalyst by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 폐촉매(廢觸媒) 재활용(再活用) 기술(技術) 동향(動向))

  • Lee, Jin-Young;Pak, Jong-Jin;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.53-61
    • /
    • 2013
  • Since the 2000s, to start inducement of SCR(Selective Catalytic Reduction) denitrification facility by large scale companies which are emitted large amount of nitrogen oxides such as power plants, combined heat and power plant, incinerators and chemical plants due to take effect the regulation of stationary sources of nitrogen oxide(NOx), and the total amount of discharged pollutants, such as regulatory gradually emissions regulations are being strengthened and the expanded coverage due to the use of SCR denitrification catalyst is a growing trend. Since 2010 due to the new catalysts to replace the already installed power plants and incinerators due to inactive, and catalytic denitrification SCR waste catalyst waste as a resource rather than the development of technologies for recycling situation is urgently needed. In this study, analyzed paper and patent for recycling technologies of waste catalyst. The range of search was limited in the open patents of USA (US), European Union (EP), Japan (JP), Korea (KR) and SCI journals from 1975 to 2012. Patents and journals were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journals was analyzed by the years, countries, companies, and technologies.

Effect of Hydrogen(H2) Addition on Flame Shape and Combustion Products in Mixed Coflow Diffusion Flames of Methane(CH4), Ethane(C2H6) and Propane(C3H8) (동축류 메탄(CH4), 에탄(C2H6), 프로판(C3H8) 혼합 확산화염내의 수소(H2) 첨가가 화염 형상 및 연소 생성물에 미치는 영향)

  • Park, Ho-Yong;Yoon, Sung-Hwan;Rho, Beom-Seok;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.780-787
    • /
    • 2019
  • As a carbon-free, green growth alternative, internal and external interest in hydrogen energy and technology is growing. Hydrogen was added to co-axial methane, methane-propane, and methane-propane-ethane diffusion flames, which are the main ingredients of LNG, to evaluate its effect on flame formation and combustion products. The variation in combustion products produced by adding hydrogen gradually to diffusion pyrolysis at room temperature and normal pressure conditions was observed experimentally by using a gas analyzer, and the shape of diffusion pyrolysis was observed step by step using a digital camera. The experimental results showed that the production volume of nitrogen oxides tended to increase and became close to linear as hydrogen was added to the diffusion pyrotechnic. This is because the relatively high temperature of heat insulation and fast combustion speed of hydrogen facilitated the production of thermal NOx. On the other hand, CO2 production tended to decrease as hydrogen was added to reduce the overall carbon ratio contained in the mixed diffusion flame of methane, methane-propane, and methane-ethane-propane. This means that the mixed fuel use of LNG-hydrogen in ships may potentially reduce emissions of CO2, a greenhouse gas.

A Case of Acute Respiratory Distress Syndrome Caused by Nitric Acid Inhalation (질산(Nitric Acid) 증기 흡입에 의한 급성호흡곤란증후군 1예)

  • Kim, Dae Sung;Yoon, Hye Eun;Lee, Seung Jae;Kim, Yong Hyun;Song, So Hyang;Kim, Chi Hong;Moon, Hwa Sik;Song, Jeong Sup;Park, Sung Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.6
    • /
    • pp.690-695
    • /
    • 2005
  • Nitric acid is an oxidizing agent used in metal refining and cleaning, electroplating, and other industrial applications. Its accidental spillage generates oxides of nitrogen, including nitric oxide (NO) and nitrogen dioxide ($NO_2$), which cause chemical pneumonitis when inhaled. The clinical presentation of a nitric acid inhalation injury depends on the duration and intensity of exposure. In mild cases, there may be no symptoms during the first few hours after exposure, or the typical symptoms of pulmonary edema can appear within 3-24 hours. However, in cases of prolonged exposure, progressive pulmonary edema develops instantaneously and patients may not survive for more than 24 hours. We report a case of a 44-year-old male who was presented with acute respiratory distress syndrome after nitric acid inhalation. He complained of cough and dyspnea of a sudden onset after inhaling nitric acid fumes at his workplace over a four-hour period. He required endotracheal intubation and mechanical ventilation due to fulminant respiratory failure. He was managed successfully with mechanical ventilation using positive end expiratory pressure and systemic corticosteroids, and recovered fully without any deterioration in his pulmonary function.

Study on the Emission Characteristics of Air Pollutants from Agricultural Area (농업지역(밭) 암모니아 등 대기오염물질 계절별 모니터링 연구)

  • Kim, Min-Wook;Kim, Jin-Ho;Kim, Kyeong-Sik;Hong, Sung-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.211-218
    • /
    • 2021
  • BACKGROUND: Fine particulate matter (PM2.5) is produced by chemical reactions between various precursors. PM2.5 has been found to create greater human risk than particulate matter (PM10), with diameters that are generally 10 micrometers and smaller. Ammonia (NH3) and nitrogen oxides (NOx) are the sources of secondary generation of PM2.5. These substances generate PM2.5 through some chemical reactions in the atmosphere. Through chemical reactions in the atmosphere, NH3 generates PM2.5. It is the causative agent of PM2.5. In 2017 the annual ammonia emission recorded from the agricultural sector was 244,335 tons, which accounted for about 79.3% of the total ammonia emission in Korea in that year. To address this issue, the agricultural sector announced the inclusion of reducing fine particulate matter and ammonia emissions by 30% in its targets for the year 2022. This may be achieved through analyses of its emission characteristics by monitoring the PM2.5 and NH3. METHODS AND RESULTS: In this study, the PM2.5 concentration was measured real-time (every 1 hour) by using beta radiation from the particle dust measuring device (Spirant BAM). NH3 concentration was analyzed real-time by Cavity Ring-Down Spectroscopy (CRDS). The concentrations of ozone (O3) and nitrogen dioxide (NO2) were continuously measured and analyzed for the masses collected on filter papers by ultraviolet photometry and chemiluminescence. CONCLUSION: This study established air pollutant monitoring system in agricultural areas to analyze the NH3 emission characteristics. The amount of PM2.5 and NH3 emission in agriculture was measured. Scientific evidence in agricultural areas was obtained by identifying the emission concentration and characteristics per season (monthly) and per hour.

Pyrolysis Effect of Nitrous Oxide Depending on Reaction Temperature and Residence Time (반응온도 및 체류시간에 따른 아산화질소 열분해 효과)

  • Park, Juwon;Lee, Taehwa;Park, Dae Geun;Kim, Seung Gon;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1074-1081
    • /
    • 2021
  • Nitrous oxide (N2O) is one of the six major greenhouse gases and is known to produce a greenhouse ef ect by absorbing infrared radiation in the atmosphere. In particular, its global warming potential (GWP) is 310 times higher than that of CO2, making N2O a global concern. Accordingly, strong environmental regulations are being proposed. N2O reduction technology can be classified into concentration recovery, catalytic decomposition, and pyrolysis according to physical methods. This study intends to provide information on temperature conditions and reaction time required to reduce nitrogen oxides with cost. The high-temperature ranges selected for pyrolysis conditions were calculated at intervals of 100 K from 1073 K to 1373 K. Under temperatures of 1073 K and 1173 K, the N2O reduction rate and nitrogen monoxide concentration were observed to be proportional to the residence time, and for 1273 K, the N2O reduction rate decreased due to generation of the reverse reaction as the residence time increased. Particularly for 1373 K, the positive and reverse reactions for all residence times reached chemical equilibrium, resulting in a rather reduced reaction progression to N2O reduction.

Study on the On-Board Test of After-Treatment Systems to Reduce PM-NOx in Low-Speed Marine Diesel Engine (선박용 저속디젤엔진 적용을 위한 PM-NOx 동시저감 배출저감설비 해상실증 연구)

  • Dong-Kyun Ko;Suk-Young Jeong;In-Seob Kim;Gye-Won An;Youn-Woo Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.497-504
    • /
    • 2023
  • In this study, Selective catalytic reduction (SCR) + Diesel particulate filter (DPF) system was installed on a ship with a low-speed engine to conduct the on-board test. The target ship (2,881 gross tons, rated power 1,470 kW@240 rpm ×1) is a general cargo ship sailing in the coastal area. Drawing development, approvals and temporary survey of the ship were performed for the installation of the after-treatment system. For performance evaluation, the gaseous emission analyzer was used according to the NOx technical code and ISO-8178 method of measurement. The particulate matter analyzer used a smoke meter to measure black carbon, as discussed by the International Maritime Organization (IMO). Tests were conducted using MGO (0.043%) and LSFO (0.42%) fuels according to the sulfur content. The test conditions were selected by considering the engine rpm (130, 160 and 180). Gaseous emission and particulate matter (smoke) were measured according to the test conditions to confirm the reduction efficiency of the after treatment system. The results of NOx emission and particulate matter (smoke) revealed that reduction efficiency was more than 90%. The exhaust pressure met the allowable back pressure (less than 50 mbar). This study confirms the importance of the on-board test and the potential of SCR + DPF systems as a response technology for reducing nitrogen oxides and particulate matter.