• 제목/요약/키워드: Nitrogen Loading Rate

검색결과 166건 처리시간 0.031초

질산화와 무기영양 독립탈질화의 연계처리에 의한 질소제거에 관한 연구 (A Study on the removal of nitrogen by combined nitrification and autotrophic denitrification)

  • 한기봉;정다영;우미희;김소연;김비오
    • 유기물자원화
    • /
    • 제16권2호
    • /
    • pp.74-80
    • /
    • 2008
  • 다공성 담체에 형성된 미생물을 이용한 질소화합물 제거를 위하여 질산화와 탈질의 연계처리에 의한 연구를 수행하였다. $NH_4-N$의 질산화 및 황담체를 전자공여체로 제공하여 독립영양 탈질이 유도되도록 실험을 수행한 결과 다음과 같은 결론이 도출되었다. 유입 농도 및 HRT의 변화에 따라 미생물에 대한 $NH_4-N$의 부하량 ($F/M_N$비)이 $0.0062{\sim}0.034gNH_4-N/g\;MLVSS{\cdot}day$의 범위에서 증가할 경우 부하량 증가에 따른 질산화 율은 감소하는 경향을 나타내었다. 같은 범위의 $F/M_N$비(유입부하)일 경우 HRT 6시간보다 8시간으로 운전하였을 때가 알칼리도 소모량이 더 높게 나타났다. 따라서 유입 $NH_4-N$ 농도가 높아짐에 따라 증가된 유입부하가 질산화 효율 증가에 미치는 영향보다는 같은 $F/M_N$비(유입부하)일 때 유입유량 변화로 인한 체류시간이 증가할수록 더 질산화의 효율 향상에 영향을 미치는 것을 알 수 있었다. EBCT의 변화에 따른 탈질효율은 8.4hr 이상으로 유지될 때는 평균 25% 이상으로 나타났으나 4.6hr으로 줄어들 때는 평균 5%로 크게 감소함으로써 EBCT는 최소한 8.4hr 이상을 유지하는 것이 더 효율적임을 알 수 있었다. 또한 탈질효율은 $NO_3-N$의 황담체 단위체적 당 유입부하가 $0.5{\sim}2.0kg\;NO_3-N/m^3{\cdot}day$의 범위에서 낮아질수록 반비례하여 증가함을 알 수 있었다.

  • PDF

슬러리형 돈사폐수에서 자원회수와 질소제거를 위한 순차적 결합공정 제안 (A Proposal of Sequencing the Combined Processes for Resources Recovery and Nitrogen Removal from Piggery Waste)

  • 황인수;민경석;배진연
    • 대한환경공학회지
    • /
    • 제28권1호
    • /
    • pp.61-66
    • /
    • 2006
  • 슬러리 형태의 돈사폐수로부터 자원회수와 질소제거를 위하여 순차적으로 ADEPT(Anaerobic digestion elutriated phased treatment) 공정과 SHARON(Single reactor system High Ammonium Removal Over nitrite)-ANAMMOX(Anaerobic ammonium oxidation)공정을 결합하여 운전하였다. ADEPT 공정은 부하율 3.95 gSCOD/L-day에서 운전되었고, SCOD 생성율과 산생성율은 각각 5.3 gSCOD/L-day와 3.3 gVFAs/L-day(as COD)였다. 가수분해에 의한 VS감소와 SCOD생성율은 각각 13%와 0.19 $gSCOD_{prod}/gVS_{feeding}$였으며, 산생성율은 0.80 $gVFAs/gSCOD_{prod.}$였다. 메탄발효조에서 가스생성율과 메탄함량은 각각 2.8 L/day($0.3m^3CH_4/kgCOD_{removal}\;@STP$) 및 77%였다. 운전조건에서 $NH_4-N$ 94.1% (TKN으로서 86.5%) 및 T-P 87.3%가 제거되었다.

Performance and Spatial Succession of a Full-Scale Anaerobic Plant Treating High-Concentration Cassava Bioethanol Wastewater

  • Gao, Ruifang;Yuan, Xufeng;Li, Jiajia;Wang, Xiaofen;Cheng, Xu;Zhu, Wanbin;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권8호
    • /
    • pp.1148-1154
    • /
    • 2012
  • A novel two-phase anaerobic treatment technology was developed to treat high-concentration organic cassava bioethanol wastewater. The start-up process and contribution of organics (COD, total nitrogen, and $NH_4^+$-N) removal in spatial succession of the whole process and spatial microbial diversity changing when sampling were analyzed. The results of the start-up phase showed that the organic loading rate could reach up to $10kg\;COD/m^3d$, with the COD removal rate remaining over 90% after 25 days. The sample results indicated that the contribution of COD removal in the pre-anaerobic and anaerobic phases was 40% and 60%, respectively, with the highest efficiency of 98.5%; TN and $NH_4^+$-N had decreased to 0.05 g/l and 0.90 g/l, respectively, and the mineralization rate of total nitrogen was 94.8%, 76.56% of which was attributed to the anaerobic part. The microbial diversity changed remarkably among different sample points depending on the physiological characteristics of identified strains. Moraxellaceae, Planococcaceae, and Prevotellaceae were dominant in the pre-anaerobic phase and Bacteroidetes, Campylobacterales, Acinetobacter, Lactobacillus, Clostridium, and Bacillus for the anaerobic phase. Methanosarcinaceae and Methanosaeta were the two main phylotypes in the anaerobic reactor.

회전원판(回轉圓板) 생물막(生物膜) 공법(工法)을 이용한 하(下)·폐수(廢水)의 고도처리(高度處理) 공정(工程) 개발(開發) (Development of a Rotating Biological Contactor(RBC) Process for the Advanced Wastewater Treatment)

  • 김응호;박재로;윤정로
    • 상하수도학회지
    • /
    • 제8권2호
    • /
    • pp.1-11
    • /
    • 1994
  • This study was conducted to develop a new RBC process available for the effective removal of organic matters and nitrogen in sewage. The RBC process for the oxidation organic compounds and nitrification was designed to occur at the 1st-stage and next-stage RBC respectively. Then nitrified water was recycled to the denitrifying RBC located at the lower part of the 1st-stage RBC. Some results were summarized as follows. 1. The loading limitation was represented as $60g{\cdot}COD/gm^2/day$ in experiment of simultaneous removal of organic matter and nitrogen. The maxmum COD % removal was 85% at the load $35g{\cdot}COD/m^2/day$. 2. The $NO_3-N$ % removal was approximately 80% at the load $60g{\cdot}COD/m^2/day$ and the maximum $NO_3-N$ remaval rate was $3.9g{\cdot}COD/m^2/day$ and the overall C/N ratio of 11.0 as required to achive 80% of $NO_3-N$% removal. 3.$NO_3-N$ removal rate was rapidly decreased above the load $7g{\cdot}NH_4{^+}-N/m^2/day$ and the maximum $NO_3-N$ removal rate was $3.7g{\cdot}NO_3-N/m^2/day$. 4. Irrespective of the recycle ratio, the COD % removal at the system of 2-stage RBC unit was nearly constant as 89% while the maximum one in the 1st-stage unit was 77% in the case of 50% recycle. 5. The maximum COD % removal in the 3-stage RBC system was 93% while 1st-stage one being 80%, under the $NH_4{^+}-N$ load of $7.4g/m^2{\cdot}d$. Also maximum percentage of nitrification and denitrification was 69% and 41% respectively, under the same $NH_4{^+}-N$ load.

  • PDF

슬러리상 돈사폐수의 혐기성 처리수의 아질산성 질소 축적 (Nitrite Accumulation of Anaerobic Treatment Effluent of Slurry-type Piggery Waste)

  • 황인수;민경석;윤주환
    • 한국물환경학회지
    • /
    • 제22권4호
    • /
    • pp.711-719
    • /
    • 2006
  • The effluent from anaerobic digestion process of slurry-type piggery waste has a characteristic of very low C/N ratio. Because of high nitrogen content, it is necessary to evaluate nitrogen removal alternative rather than conventional nitrification-denitrification scheme. In this study, two parallel treatment schemes of SBR-like partial nitritation reactor coupled with anaerobic ammonium oxidation (ANAMMOX) reactor, and a nitritation reactor followed by nitrite denitrification process were evaluated with a slurry-type piggery waste. The feed to reactors adjusted with various $NH_4-N$ and organics concentration. The nitrite accumulation was successfully accomplished at the loading rate of about $1.0kgNH_4-N/m^3-day$. The $NO_2-N/NH_4-N$ ratio 1~2.6 in nitritated effluent that operated at HRT of 1 day indicated that SBR-like partial nitritation was applicable to ANAMMOX operation. Meanwhile, the nitrite accumulation of 87% was achieved at SBR operated with HRT of 3 days and $0.4mgO_2/L$ for denitritation. Experimental results further suggested that HRT (SRT) and free ammonia(FA) rather than DO are an effective control parameter for nitrite accumulation in piggery waste.

다단 생물반응기에 의한 질소제거 (Nitrogen Removal from Wastewater by a Multi-stage Bio-reactor)

  • 최규철;정일현
    • 환경위생공학
    • /
    • 제13권1호
    • /
    • pp.91-103
    • /
    • 1998
  • Design data for COD and nitrogen removal from wastewater were collected from Pilot's Multi-stage Bio-reactor. Hyraulic conditions and pollutant loadings were varied in order to optimize the biological and operational parameters. Pilot's experimental results summarize as followings. 1. T-N removal efficiency in the organic volumetric loading 0.2 kgCOD/m$^{3}$·d was obtained as maxium of 85% at internal recycle ratio 2.5 and in more ratio than this it was decreased. Organic removal efficiency was about 91% under the overall experimental conditions and not influenced by recycle ratio.. 2. Nitrification reaction was shown as maxium in the SCOD$_{cr}$/NH$^{+}$-N ratio of 6.5 and in more ratio than this it was decreased. Denitrification rate was the maxium as 85% in more than 7.5 of SCOD$_{cr}$/NO$_{x}$-N ratio and in the ratio over this ratio it becomes constant. 3. By utilizing an applied new model of Stover-Kincannon from Monod's kinetic model, concentration of T-N in the effluent according to flow quanity in the influent was estimated as 8.74 and -67.5 respectively. The formula for estimating T-N concentration of effluent was obtained like this: N$_e$=N$_0$(1- $\frac{8.74}{(QN$_0$/A)-67.05}$)

  • PDF

토양/대수층 처리(Soil Aquifer Treatment)에서 유기물과 질소화합물 제거와 이송 모델링-(II) 현장조건의 변화에 따른 모델 결과 (Modeling Fate and Transport of Organic and Nitrogen Species in Soil Aquifer Treatment-(II) Simulations Based on the Field Conditions)

  • 김정우;김정곤;이영준;최희철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권4호
    • /
    • pp.13-17
    • /
    • 2005
  • 암모늄의 질산화 반응, 질소산화물의 탈질 반응, 그리고 유기물의 산화반응을 고려한 SAT 모델링 시스템에 대해서, 현장조건의 변화에 따른 모델 결과를 비교하기 위해 6가지 모델 조건에 대한 가상의 수직 2차원상 모델 시뮬레이션을 하였다. 시뮬레이션 조건에서 수리전도도, 주입수 주입율, 지표 피복 여부, 그리고 운영 계획과 같은 4가지 영향 인자들이 고려되었다. 시뮬레이션 결과, 모든 조건에서 모델 개발 과정에서 고려한 반응 영향들이 잘 모사되었다.

연속 회분식 반응조의 최적 운전시스템에 관한 연구 (Study on the optimum operation system of Sequencing Batch Reactor)

  • 엄태규;고은주
    • 상하수도학회지
    • /
    • 제13권4호
    • /
    • pp.54-61
    • /
    • 1999
  • SBR process used to evaluate the removal of organics, nitrogen and phosphorus on the basis of a report of research on a precedence at various operation cycle and condition change. Effluent concentration of COD were 50mg/l, 50mg/l, 90mg/l respectively, The removal rates of COD were nearly over 95% at Run 1, 2 and 4. But at Run 3, Effluent concentration of COD was 255.0mg/l, The removal rate of COD was 87% at Run 3. As Oxic/Anoxic rate was fixed and operating cycle of Oxic/Anoxic was changed, the removal rates of T-N were 74.7%, 46.9%, 28.5%, 63.3% respectively at Run 1~4. The case of Run 1 was best result. The removal rates of T-P was appeared in proportion to T-N removal rates and rest of $NO_2-N$. The removal rates of T-P were 51.2%, 35.5%, 41.5%, 51.9% respectively. The removal rates of COD, T-N, T-P were influenced on the change of SBR operation cycle. As organic loading rate was $1.43kgCOD/m^3day$ and C/N ratio was 3.0, operation cycle of Run 1 was best condition of T-N removal rates and T-P removal.

  • PDF

철 석출장치가 결합된 무산소.호기공정에 의한 인 제거 특성 (Phosphorus Removal (Characteristics by Anoxic Oxic Process) by Anoxic and Oxic Processed Combined with Iron Electrolysis)

  • 김민호;김영규;김수복
    • 한국환경보건학회지
    • /
    • 제36권6호
    • /
    • pp.502-509
    • /
    • 2010
  • In this study, the (phosphorous removal) the characteristics of phosphorous removal due to (the iron compound precipitated) iron compound precipitation by iron electrolysis in (the anoxic. oxic process) anoxic and oxic processes (equipped with the) in an iron precipitation device were analyzed. During the device operation period, the average concentration of BOD, T-N, and T-P were 219.9 mg/l, 54.6 mg/l and 6.71 mg/l, respectively. The BOD/$COD_{Cr}$ ratio was 0.74, and the BOD/T-N and BOD/T-P ratios were 4.0 and 32.8, respectively. The removal rate of (the organic matters) organic matter (BOD and $COD_{Cr}$) was very high at 91.6% or higher, and that of nitrogen was 80.5%. The phosphorous concentration (of the final) in the treated water was 0.43 mg/l (0.05-0.74 mg/l) on average, and the removal efficiency was high at 90.8%. The soluble T-P concentrations in (an) the anoxic reactor, oxic reactor (II) and final treated water were 1.99 mg/l, 0.79 mg/l and 0.43 mg/l, respectively, which indicated that the phosphorous concentration in the treated water was very low. Regardless of the changes in the concentrations of (organic matters) organic matter, nitrogen and phosphorous in the influent, the quality of the treated water was relatively stable and high. The removal rate of T-P somewhat increased with the increase in the F/M ratio in the influent, and it also linearly increased in proportion to the T-P loading rate in the influent. In the treatment process used in this study, phosphorous was removed (using) by the precipitated iron oxide. Therefore, the consumption of organic (matters) matter for biological phosphorus removal was minimized and (most of the organic matters were) was mostly used as the organic carbon source for the denitrification in the anoxic reactor. This (can be an economic) treatment process (without the need for the supply of additional organic matters) is economic and does not require the supply of additional organic matter.

인공습지에서 영양소 제거 설계모델 검토 및 질소제거 개선방안에 대한 고찰 (Evaluation of various nutrients removal models by using the data collected from stormwater wetlands and considerations for improving the nitrogen removal)

  • 박기수;김영철
    • 한국습지학회지
    • /
    • 제19권1호
    • /
    • pp.90-102
    • /
    • 2017
  • 본 연구에서는 과거 2년에 걸쳐 강우유출수 처리목적의 인공습지로부터 수집된 수질자료를 바탕으로 지금까지 국외에서 개발된 다양한 형태의 영양소 모델의 적용성을 평가하였다. 검토결과 질소제거에 가장 큰 영향을 미치는 요인은 수온과 수리학적 부하율(HLR) 이었는데 습지의 수표면적이 습지의 용량에 비해 더 중요하게 작용했음을 시사해주고 있다. 질소제거는 미국 WEF(water environment federation)가 개발한 준경험적인 형태의 모델이 적합한 것으로 밝혀졌다. 한편 인 제거 모델은 수온과 제거속도상수의 관계를 Power Model로 보고 모의했을 때 실측치와 가장 가깝게 계산치를 산출할 수 있었으며 실측치의 증가와 감소경향을 비교적 정확하게 모의할 수 있었다($R^2=0.79$). 그러나 모든 시도에서 수온이 특정온도 이하로 감소했을 때 가장 심한 오차를 발생하여 취약한 예측성능을 보였다. 한편 인공습지에서 질소제거특성을 검토한 결과 질산화에 비하여 탈질이 저조한 것으로 나타났는데 그 이유는 탄소원의 부족과 높은 용존산소 농도로 인하여 Anoxic 조건의 미형성 때문으로 분석되었다. 질소제거 향상방안으로 용존산소의 제어와 탄소원의 확보차원에서 햇빛에 노출된 개방수역과 햇빛에 노출된 식생구역, 그리고 습지의 기능적 측면을 고려한 구성요소의 배분 및 부유 수생식물 및 무기성 여재를 이용하는 방안을 논의하였다.