• 제목/요약/키워드: Nitrocellulose/MWCNT

검색결과 3건 처리시간 0.021초

유리 기판 위에 제작된 Nitrocellulose/MWCNT 박막의 질소가스 검출특성 (NOx Gas Detecting Properties of the Nitrocellulose/MWCNT Thin Film Coated on the Glass Substrate)

  • 이원재;최명규;장경욱
    • 반도체디스플레이기술학회지
    • /
    • 제11권1호
    • /
    • pp.55-59
    • /
    • 2012
  • NOx is one of the toxin gases, which is mainly causing the optic-chemical smog phenomena, and decreasing in the function of nose and taste. Especially, NO is easily reacting with $O_3$, and then becoming the $NO_2$. $NO_2$ is mainly causing the acidulation rain. So, we should develop the NOx gas sensing system to detect NOx gas. In this paper, we present the microstructure and the NOx gas detecting properties of the nitrocellulose/MWCNT thin film coated by the air-spray on the glass substrate. The nitrocellulose/MWCNT-based gas sensors have been studied detecting NOx molecules of a ppm-level at the temperature range of $30{\sim}120^{\circ}C$. The resistance of the sensors decreases when the sensors are exposed to NOx gas. As a results, we obtained the nitrocellulose/MWCNT sensors with the sensitivity of 0.6%/sec under the 0.8 ppm of NOx gas concetration. Also, we get the activation energy of 0.202eV from the sensor for the 0.3 ppm of NOx gas concentration.

10 ${\mu}m$ 폴리이미드 기판에 성막된 플렉시블 투명 전도막용 Nitrocellulose/MWCNT 복합체의 제작 및 특성 (The Properties of the Nitrocellulose/MWCNT Composites Fabricated on the 10 ${\mu}m$ Polyimide Film for the Flexible Transparent Conduction Film)

  • 장경욱
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.117-121
    • /
    • 2010
  • The composite films were fabricated by air-spray method under the 2 kgf/$cm^2$ pressure using the multi-walled CNTs solution and the nitrocellulose on a 10 ${\mu}m$ polyimide film substrates. We obtained the composite films which were sprayed with the MWCNT dispersion by varying the spray time from 20, 40 and 60sec. The electrical and the optical properties of the sandwiched-structure-composite thin films were investigated by an UV/VIS spectrometer and a Hall Effect equipment. As a result, the optical transmittance of all thin films in the visible range, as well as the electrical conductance shows an available value for the transparent electrode. The carrier concentration and the light transmittance rate for the fabricated sample are between $3.733{\times}10^{10}$ and $6.551{\times}10^{14}cm^{-3}$, around 35 to 95%, respectively.

플라즈마 및 니트로셀롤로우스로 처리된 유리기판을 사용한 MWCNT 스프레이 박막의 수소가스 검출특성 (Sensing Properties of Hydrogen Gas for the MWCNT Thin Film Sprayed on the Glass Substrate Cured with Plasma and Nitrocellulose)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제24권4호
    • /
    • pp.290-296
    • /
    • 2011
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. In this paper, networks of Multi-walled carbon nanotube (MWCNT) materials were investigated as a resistive gas sensors for the $H_2$ gas detection. Sensor films were fabricated by the air spray method using the multi-walled CNTs dispersion solution on the glass substrates cured with plasma and nitrocellulose. Sensors were characterized by the resistance measurements in the self-fabricated oven in order to find the optimum detection properties for the hydrogen gas molecular. The sensitivity and the linearity of the MWVNT sensors using the glass substrate cured with plasma for the $H_2$ gas concentration of 0.06~0.6 ppm are 0.013~0.097%/sec and 0.131~0.959%FS, respectively. The MWCNT film was excellent in the response for the hydrogen gas moleculars and its reaction speed was very fast, which could be using as hydrogen gas sensor. The resistance of the fabricated sensors decreases when the sensors are exposed to $H_2$ gas.