• Title/Summary/Keyword: Nitrocarburizing

Search Result 34, Processing Time 0.029 seconds

Effect of $CO_2$ Content on the Growth and Corrosion Characteristics of the Compound Layers in Gaseous Nitrocarburized Carbon Steels (가스 질화침탄처리한 탄소강의 화합물층 성장 및 부식특성에 미치는 $CO_2$함량의 영향)

  • Kim, Y.H.;Kim, S.D.;Yoon, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.5
    • /
    • pp.219-227
    • /
    • 2002
  • This study has been performed to investigate the effect of $CO_2$ content on the growth characteristics of the compound layer, porous layer and corrosion characteristics of carbon steels after gaseous nitrocarburizing in $70%-NH_3-CO_2-N_2$ at $580^{\circ}C$ for 2.5 hrs. The results obtained from the experiment were the thickness of the compound and porous layers increased with increasing $CO_2$ contents. At the same fixed gas composition the thickness of the compound and porous layer increased with increasing carbon content of the specimens. X-ray diffraction analysis showed that compound layer was mainly consisted of ${\varepsilon}-Fe_{2-3}(N,C)$ and ${\gamma}^{\prime}-Fe_4N$ as the increased with $CO_2$ contents in atmosphere, compound layer was chiefly consisted of ${\varepsilon}-Fe_{2-3}(N,C)$ phase. With increasing $CO_2$ content and total flow rate in gaseous nitrocarburizing, the amount of ${\varepsilon}-Fe_{2-3}(N,C)$ phase in the compound layer was increased. The current density of passivity decreased with increasing $CO_2$ content due to the development of porous layer at the out most surface of ${\varepsilon}-Fe_{2-3}(N,C)$.

A Study on the Corrosion Properties and Microstructure of the Nitrocarburized and Oxidized Low Carbon Steel according to the Treatment Atmospheres (저탄소강의 질화침탄과 산화처리시 분위기 변화에 따른 조직 및 부식특성에 관한 연구)

  • Shin, P.W.;Lee, K.H.;Nam, K.S.;Park, Y.M.;Jo, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • Nitrocarburizing was carried out with various $CH_4$ gas composition with 4 torr gas pressure at $570^{\circ}C$ for 3 hours and post oxidation was carried out with 100% $O_2$ gas atmosphere with 4 torr at different temperatures for various time. In the case of plasma nitrocarburizing, It is that the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) and ${\gamma}^{\prime}-Fe_4$(C, N), which comprise the compound layer phase, depend on concentrations of $N_2$ gas and $CH_4$ such that when the concentration of $N_2$ and $CH_4$ increased, the ratio of ${\gamma}^{\prime}-Fe_4$(C, N) decreased, but the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) increased. The thickness of compound layer consistently increased as gas concentration increased regardless of $N_2$ and $CH_4$ expect when the concentration of $CH_4$ was 3.5 volume%, it decreased insignificantly. When oxidizing for 15min in the temperature range of $460{\sim}570{^\circ}C$, the study found small amount of $Fe_3O_4$ at the temperature of $460{^\circ}C$ and also found that amounts of $Fe_2O_3$. and $Fe_3O_4$ on the surface and amount of ${\gamma}^{\prime}-Fe_4$(C, N) in the compound layer increased as the increased over $460^{\circ}C$, but the thickness of the compound layer decreased. Corrosion resistance was influenced by oxidation times and temperature.

The Application of Plasma Nitrocarburizing and Plasma Post Oxidation Technology to the Automobile Engine Parts Shafts (자동차 엔진부품용 Shaft에 플라즈마 산질화기술 적용)

  • Jeon, Eun-Kab;Park, Ik-Min;Lee, In-Sup
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.681-686
    • /
    • 2006
  • Plasma nitrocarburising and plasma post oxidation were performed to improve the wear and corrosion resistance of S45C and SCM440 steel by a plasma ion nitriding system. Plasma nitrocarburizing was conducted for 3h at $570^{\circ}C$ in the nitrogen, hydrogen and methane atmosphere to produce the ${\varepsilon}-Fe_{2-3}$(N, C) phase. Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at constant temperature of $500^{\circ}C$ for 1 hour. The very thin magnetite ($Fe_3O_4$) layer $1-2{\mu}m$ in thickness on top of the $15{\sim}25{\mu}m$ ${\varepsilon}-Fe_{2-3}$(N, C) compound layer was obtained by plasma post oxidation. A salt spray test and electrochemical testing revealed that in the tested 5% NaCl solution, the corrosion characteristics of the nitrocarburized compound layer could be further improved by the application of the superficial magnetite layer. Throttle valve shafts were treated under optimum plasma processing conditions. Accelerated life time test results, using throttle body assembled with shaft treated by plasma nitrocarburising and post oxidation, showed that plasma nitrocarburizing and plasma post oxidation processes could be a viable technology in the very near future which can replace $Cr^{6+}$ plating.

Frictional behaviour of Oxide Films Produced on S45C Steel by Plasma Nitrocarburizing and Post Plasma Oxidation Treatment (플라즈마 질탄화 & 후산화처리로 S45C강에 형성된 산화막의 마찰거동)

  • Jeong, Kwang-Ho;Lee, In-Sup
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.766-770
    • /
    • 2006
  • The frictional behavior of oxide films on top of the plasma nitrocarburized compound layers was investigated in terms of post-oxidation treatment temperatures. The post-oxidation treatment at both temperatures($400^{\circ}C,\;500^{\circ}C$) produced magnetite($Fe_3O_4$) films which led to a significant enhancement in corrosion resistance. However, this process did not result in any improvement in frictional behavior of the nitrocarburized surface. The wear mechanisms were governed predominantly by the abrasive action of the slider on the surface irrespective of the counterface material(SiC and Bearing steel). When the specimen was sliding against a SiC counterface, the oxide films were destroyed during the early stage of the sliding process and the wear debris of the oxide film at the sliding track had a great influence on the friction coefficient. On the other hand, when sliding against a bearing steel counterface, the slider was mainly worn out due to the much higher hardness of the surface hardened layer. The fluctuation of the friction coefficient of $400^{\circ}C$-oxidized/ nitrocarburized specimen is much severer than that of $500^{\circ}C$ specimen, due to the less amount of wear debris.

The Influence of Pulse Frequency and Duty Factor on Surface Characteristics during Low Temperature Plasma Nitrocarburizing Treatment of Duplex Stainless Steel (Duplex Stainless Steel의 저온 플라즈마 침질탄화시 Pulse Frequency 및 Duty Factor에 따른 표면 특성평가)

  • Cheon, Chang-Seok;Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.221-226
    • /
    • 2014
  • A low temperature plasma nitrocarburizng was implemented on the duplex stainless steel to achieve the enhancement of surface hardness without degradation of its corrosion resistance. Attempts were made to investigate the influence of Pulse frequency and Duty factor of pulsed power in a high Pulse frequency regime on the surface characteristics of the hardened layer. The hardened layer (S-phase) was formed on all of the treated surfaces. Surface hardness reached up to 1300 $HV_{0.1}$ which is about 4.6 times higher than that of the untreated material (280 $HV_{0.1}$). The thickness of the hardened layer tends to increase lightly with the higher Pulse frequency and the higher Duty factor. The corrosion resistance of nitrocarburized duplex stainless steel was almost similar to that of the untreated material. Both the Pulse frequency and the Duty factor do not have a significant influence on the corrosion property of plasma treated duplex stainless steel.