• Title/Summary/Keyword: Nitro

Search Result 881, Processing Time 0.026 seconds

Role of Nitric Oxide in Ischemia-evoked Release of Norepinephrine from Rat Cortex Slices (흰쥐 대뇌피질 절편에서 허혈에 의한 Norepinephrine 유리에 있어서 Nitric Oxide의 영향)

  • Eun, Young-Ah;Kim, Dong-Chan;Cho, Kyu-Park;Kim, Kee-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.673-679
    • /
    • 1997
  • It has been generally accepted that glutamate mediates the ischemic brain damage, excitotoxicity, and induces release of neurotransmitters, including norepinephrine(NE), in ischemic milieu. In the present study, the role of nitric oxide(NO) in the ischemia-induced $[^3H]norepinephrine([^3H]NE)$ release from cortex slices of the rat was examined. Ischemia, deprivation of oxygen and glucose from $Mg^{2+}-free$ artificial cerebrospinal fluid, induced significant release of $[^3H]NE$ from cortex slices. This ischemia-induced $[^3H]NE$ release was significantly attenuated by glutamatergic neurotransmission modifiers. $N^G-nitro-L-arginine$ methyl ester(L-NAME), $N^G-monomethyl-L-arginine$ (L-NMMA) or 7-nitroindazole, nitric oxide synthase inhibitors attenuated the ischemia-evoked $[^3H]NE$ release. Hemoglobin, a NO chelator, and 5, 5- dimethyl-L-pyrroline-N-oxide(DMPO), an electron spin trap, inhibited $[^3H]NE$ release dose-dependently. Ischemia-evoked $[^3H]NE$ release was inhibited by methylene blue, a soluble guanylate cyclase inhibitor, and potentiated by 8-bromo-cGMP, a cell permeable cGMP analog, zaprinast, a cGMP phosphodiesterase inhibitor, and S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide generator. These results suggest that the ischemia-evoked $[^3H]NE$ release is mediated by NMDA receptors, and activation of NO system is involved.

  • PDF

Hypoxia-Induced EDNO Release is Further Augmented by Previous Hypoxia and Reoxygenation in Rabbit Aortic Endothelium

  • Han, Jae-Jin;Suh, Suk-Hyo;Suh, Kyung-Phil;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.209-216
    • /
    • 1998
  • The present study was designed: (1) to determine whether or not hypoxia stimulates the release of endothelium-derived relaxing factors (EDRFs) from endothelial cells, and (2) to examine whether or not the hypoxia-induced EDRFs release is further augmented by previous hypoxia-reoxygenation, using bioassay system. In the bioassay experiment, rabbit aorta with endothelium was used as EDRFs donor vessel and rabbit carotid artery without endothelium as a bioassay test ring. The test ring was contracted by prostaglandin $F_{2{\alpha}}$ $(3{\times}10^{-6}\;M/L)$, which was added to the solution perfusing through the aortic segment. Hypoxia was evoked by switching the solution aerated with 95% $O_2/5%\;CO_2$ mixed gas to one aerated with 95% $N_2/5%\;CO_2$ mixed gas. When the contraction induced by prostaglandin $F_{2{\alpha}}$ reached a steady state, the solution was exchanged for hypoxic one. And then, hypoxia and reoxygenation were interchanged at intervals of 2 minutes (intermittent hypoxia). The endothelial cells were also exposed to single 10-minute hypoxia (continuous hypoxia). When the bioassay ring was superfused with the perfusate through intact aorta, hypoxia relaxed the precontracted bioassay test ring markedly. Whereas, when bioassay ring was superfused with the perfusate through denuded aorta or polyethylene tubing, hypoxia relaxed the precontracted ring slightly. The relaxation was not inhibited by indomethacin but by nitro-L-arginine or methylene blue. The hypoxia-induced relaxation was further augmented by previous hypoxia-reoxygenation and the magnitude of the relaxation by intermittent hypoxia was significantly greater than that of the relaxation by continuous hypoxia. The results suggest that hypoxia stimulates EDNO release from endothelial cells and that the hypoxia-induced EDNO release is further augmented by previous hypoxia-reoxygenation.

  • PDF

Inducible Nitric Oxide Synthase mRNA Expression and Nitric Oxide Production in Silica-Induced Acute Inflammatory Lung Injury

  • Lee, Ji-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.233-239
    • /
    • 1998
  • Stimulated alveolar macrophages and neutrophils produce nitric oxide, a free radical by an inducible nitric oxide synthase(iNOS), which reacts with superoxide anion to form peroxynitrite, a more highly reactive toxic species. The objectives of the present study were to evaluate acute inflammatory lung injury and to determine iNOS mRNA induction and nitric oxide production by rat broncho-alveolar lavage cells following intratracheal treatment of silica. After 4 h exposure to silica, differential counts of broncho-alveolar lavage cells and lactate dehydrogenase(LDH) activity as well as total protein in the broncho-alveolar lavage fluid were determined. Broncho-alveolar lavage cells were also assayed for iNOS mRNA and the productions of nitrite and nitrate measured in the cells cultured. Differential analysis of broncho-alveolar lavage cells showed that the number of alveolar macrophages slightly decreased following silica treatment; however, red blood cells, lymphocytes, and neutrophils significantly were increased by 9-, 14-, and 119-fold following silica treatment, respectively, compared with the saline control. It was also found significant increases in the LDH activity and total protein in the lavage fluid obtained from silica-treated rats, indicating silica-induced acute lung injury. Northern blot analysis demonstrated that the steady state levels of iNOS mRNA in broncho-alveolar lavage cells were increased following silica treatment. The productions of nitrite and nitrate in the cultured cells were significantly increased by 2-fold following silica treatment, respectively, which were attenuated by the NOS inhibitor $N{\omega}-nitro-L-arginine-methyl$ ester(L-NAME) and partially reversed by L-arginine. These findings suggest that nitric oxide production in alveolar macrophages and recruited neutrophils is increased in response to silica. Nitric oxide may contribute in part to acute inflammatory lung injury.

  • PDF

Studies on Antimutagenic and Lipotropic Action of Flavonoids of Buckwheats -Desmutagenic Activity of Buckwheat Leaf Extracts (메밀 Flavonoids의 항돌연변이원성 및 지질대사 조절기능에 관한 연구 -메밀 잎 에탄올 추출물의 항돌연변이원성 연구-)

  • 함승시;최근표;최용순;이상영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.4
    • /
    • pp.698-703
    • /
    • 1994
  • In spore rec-assay using B. subtillus H17(rec) and M 45(rec) , the ethanol extract of buckwheat leaves showed antimutagenicity in condition of low concentrations, but its did comutagenicity in condition of high concentrations. In Ames test, the ethanol extract of buckwheat leaves reduced the mtabenicity of N-methyl-N' -nitro-N-nitrosoguaidine (MNNG), benzo (a) pyrene(B($\alpha$)P), 2-amino-fluorene(2AF), and 3-amino -1, 4-dime-thyl-5-H-pyrido(4, 3-b) indol(Trp-P-1) in Salmonella typhimurium TA98 and TA100. The ethanol extract was fractionated by hexane, ethylacetate, butanol and water. Among Them hexane fraction showed the highest inhibition rate on the mutagenicity of B($\alpha$)P, and so did chloroform fraction on the mutagenicity of MNNG in S. typhimurium Ta98 and TA100. To elucidate the antimutagenic mechanism of the ethanol extract, it was mixed and co-incubated with various metagens, S9 mix, and the bacteria with different experimental orders and different reaction times. The ethanol extract did not affect reversion rate of pre-mutated. S.typhimurium. However, when the ethanol extract was added to the mutagens before their interaction with S.typhimurium , it reduced the mutation rate to 152$\pm$12-273$\pm$18 colonies/plates in case of MNNG, and 135$\pm$13-195$\pm$10 colonies/ plates in case of B($\alpha$)P), showing strong desmutagenic activity.

  • PDF

The production of riboflavin by Ashbya gossypii JAG-13 (Ashbya gossypii JAG-13 변이주에 의한 riboflavin의 생산)

  • Shim, Moon-Bo;Yum, Sung-Kwan;Kim, Man-Keun;Bang, Won-Gi
    • Applied Biological Chemistry
    • /
    • v.36 no.5
    • /
    • pp.332-338
    • /
    • 1993
  • For the production of riboflavin, strain development of Ashbya gossypii NRRL Y-1056 was attempted by NTG(N-methyl-N'-nitro-N-nitrosoguanidne) treatment. The optimum composition of culture medium and other culture conditions for the production of riboflavin by selected mutant Ashbya gossypii JAG-13 were determined. The optimum composition of medium was 9% of corn oil, 3% of gellatone, 4% of CSL, 0.3% of glycine, 0.2% of S770. The optimum culture temperature and initial pH of medium was $28^{\circ}C$ and 6.5, respectively. oxygen was essential for the production of riboflavin, but excess oxygen inhibit the production of riboflavin. When Ashbya gossypii JAG-13 was cultured under above conditions for 12 days with a bioreactor, 6.9 mg/ml of riboflavin was produced.

  • PDF

Hydrolysis of p-Nitrophenyl Carboxylic Ester in N,N-Dimethyl-N-dodecyl-N-(2-methylbenzimidazoyl) Ammonium Chloride Micellar Solution (N,N-Dimethyl-N-Dodecyl-N-(2-methylbenzimidazoyl) Ammonium Chloride 미셀 용액속에서 p-Nitrophenyl Carboxylic Ester의 가수분해)

  • Kim, Jeung-Bea;Kim, Hak-Yoon
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.509-516
    • /
    • 2008
  • New functional surfactant, N,N-dimethyl-N-dodecyl-N-(2-methyl benzimidazoyl) ammonium chloride(DDBAC) having benzimidazole(BI) functional group have been synthesized and the critical micellar concentration of DDBAC measured by surface tentiometry and electric conductivity method was $8.9{\times}10^{-4}M$. Micellar effects in DDBAC functional surfactant solution on the hydrolysis of p-nitrophenylacetate(p-NPA), p-nitro-phenylpropionate(p-NPP) and p-nitrophenylvalerate(p-NPV) were observed with change of various pH (Tris-buffer). The pseudo first rate constants of hydrolysis of p-NPA, p-NPP and p-NPV in optimum concentration of DDBAC solution increase to about 160, 280 and 600 times, respectively, as compared with those of aqueous solution at pH 8.00(Tris-buffer). It is considered that benzimidazole functional moiety accelerates the reaction rates of hydrolysis because they act as nucleophile or general base. In optimum concentration of DDBAC solution, the rate constants of hydrolysis of p-NPP and p-NPV increase to about 1.5 and 3.0 times, respectively, as compared with that of p-NPA. It means that the more the carbon numbers of alkyl group of substrates, the larger the binding constants between DDBAC micelle and substrates are. To know the hydrolysis mechanism of p-NPCE(p-NPA, p-NPP and p-NPV), the deuterium kinetic isotope effects were measured in $D_2O$ solutions. Consequently the pseudo first order rate constant ratios in $H_2O$ and $D_2O$ solution, $k_{H_2O}/k_{D_2O}$, were about $2.8{\sim}3.0$ range. It means that the mechanism of hydrolysis were proceeded by nucleophile and general base attack in approximately same value.

Studies on Development of Antagonistic Microorganism by Cell Fusion - Biological control of disease - ) (세포융합에 의한 신 길항미생물 육종에 관한 연구 - 목초 병해의 생물학적 방제 -)

  • 최기춘;이영환;전우복
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • This study was to investigate an effective biological control of forage diseases and provide a basic data and a model in improving variety of antagonistic bacteria, with growth promoting effect on forage, through cell fusion. The results obtained were summarized as follows; 1. The antagonistic himbacterium against soil-borne phathogenic fungi Fusarium oxysporum and Rhizoctonia solani was isolated from continuous cropping himsphere soil of forage, and its biological and physiological characteristics were investigated. This bacterium was identified as Bacillus subrilis and named BS 101. Another strain for cell fusion was Bacillus thur ingiensis ssp. kurstaki HD-I(BT 37669) with insecticidal crystal. 2. The auxotropic mutants of BS 101 and BT 37669 were derived after mutagenesis using N-methyl-N'nitro- Nitrosoguanidine(NTG) to give amino acid requirement marker. n e s e auxotropic mutants of BS 101 and BT 37669 were named BS 1013(his-) and BT 69(asp-), respectively. 3. The best protoplast requirement was obtained using DM 3 medium, containing 5% casamino acid, 1 M $MgCI_2$ and 2% bovine semm albumin, to give Fusant 3, 7 and 8. BT toxin gene was not identified with fusants by Southern blotting. However, SDS-PAGE analysis of strains showed various protein patterns among fusants. 4. From the dark culture experiment, growth of forage in inoculated soil with antagonistic bacteria was delayed than that of non-inoculated soil with antagonistic bacteria in each continuous cropping soil and in each sterilized soil. On the other hand, growth duration of forage was different between continuous cropping soil and sterilized soil. 5. Seed germination of Alfalfa, Italian ryegrass and Orchardgrass were significantly improved by inoculation of antagonistic bacteria(p< 0.05).

  • PDF

A Central Pressor Response to Endogenous Nitric Oxide Synthesis Inhibition in Anesthetized Rats

  • Moon, Sung-Ho;Yang, Min-Joon;Oh, Seung-Ho;Kim, Mi-Won;Yoo, Kwang-Jay;Lee, Jong-Eun;Jun, Jae-Yeoul;Yeum, Cheol-Ho;Yoon, Pyung-Jin
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.197-202
    • /
    • 1994
  • The present study was aimed to determine if endogenous L-arginine-nitric oxide (NO) pathway has central, rather than peripheral, mechanisms in blood pressure regulation. Arterial blood pressure and heart rate responses to acute inhibition of the t-arginine-NO pathway were examined in rats anesthetized with thiopental (50 mg/kg, IP). An intracerebroventricular (ICV) cannula was placed in the left lateral ventricle. The right femoral artery was cannulated to measure arterial blood pressure and the vein to serve as an infusion route. $N^G-nitro-L-arginine$ methyl ester (L-NAME) was infused either intracerebroventricularly or intravenously. ICV infusion $(1.25\;{\mu}L/min)$ of L-NAME $(20\;or\;100\;{\mu}g/kg)$ per minute for 60 min) increased the mean arterial pressure and heart rate. Plasma renin concentrations(PRC) were significantly lower in L-NAME-infused group than in the control. L-Arginine $(60\;{\mu}g/min,\;ICV)$ prevented the pressor response to ICV L-NAME. The pressor response was not affected by simultaneous intravenous infusion of saralasin, but was abolished by hexamethonium treatment. Intravenous infusion $(40\;{\mu}L/min,\;10{\sim}100\;{\mu}g/kg\;per\;minute\;for\;60\;min)$ also increased blood pressure, while it decreased heart rate. These results indicate that endogenous L-arginine-NO pathway has separate central and peripheral mechanisms in regulating the cardiovascular function. The central effect may not be mediated via activation of renin-angiotensin system, but via, at least in part, activation of the sympathetic outflow.

  • PDF

Effects of Soil Environmental Conditions on the Decomposition Rate of Insecticide Fenitrothion in Flooded Soils (담수토양중(湛水土壤中)에 있어서 살충제(殺蟲劑) fenitrothion의 분해속도(分解速度)에 미치는 각종(各種) 토양환경조건(土壤環境條件)의 영향)

  • Moon, Young-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1990
  • The effects of soil environmental conditions on the degradation rates of fenitrothion(O-O-dimethyl O-4-nitro-m-tolyl phosphorothioate) in soils under flooded conditions were examined in the laboratory. Fenitrothion was degraded rapidly and the half life period was within 4 days. Furthermore the degradation was mere rapid under flooded conditions than under upland conditions. The decomposition rate was varied with soils and soil temperatures. Fenitrothion degraded more slowly at 30ppm than at l0ppm. Repeated applications of fenitrothion in soils accelerated the degradation rates. The degradation remarkably increased with amendment of rice straw. However, degradation rates ,were virtually unaffected by the addition of the mixed-fertilizer, the fungicide IBP and the herbicide butachlor. The population of fenitrothion-degrading microbes, which were counted by MPN method, always corresponded with the degradation rates in the soils.

  • PDF

Role of Advanced Glycation End Products in TGF-β1 and Fibronectin Expression in Mesangial Cells Cultured under High Glucose

  • HA Hunjoo;KIM Hwa-Jung;LEE Hi Bahl
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.190-197
    • /
    • 2005
  • Advanced glycation end products (AGE) have been implicated in the pathogenesis of diabetic complications including nephropathy. However, the role of AGE in the activation of mesangial cells cultured under high glucose has not been elucidated. The effects of aminoguanidine, which prevents formation of AGE and protein cross-linking, on the synthesis of $TGF-{\beta}1$ and fibronectin by rat mesangial cells cultured under high glucose for 2 weeks were examined and compared with the effects of $N^G$-nitro-L-arginine methyl ester (NAME), a selective nitric oxide synthase inhibitor, because aminoguanidine also inhibits the inducible nitric oxide synthase. Culture of mesangial cells in 30 mM (high) glucose for 2 weeks induced 1.5-fold (ELISA) and 1.9-fold (Western blot analysis) increase in AGE in the culture media compared to 5.6 mM (control) glucose. Northern blot analysis revealed 1.5-fold increase in $TGF-{\beta}1$ and 1.7-fold increase in fibronectin mRNA expression in cells cultured under high glucose compared to control glucose. Increases in mRNA expression were followed by increased protein synthesis. Mink lung epithelial cell growth inhibition assay revealed 1.4-fold increase in $TGF-{\beta}1$ protein in high glucose media compared to control. Fibronectin protein also increased 2.1-fold that of control glucose by Western blot analysis. Administration of aminoguanidine suppressed AGE formation in a dose dependent manner and at the same time suppressed $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells cultured in both control and high glucose. In contrast, NAME did not affect high glucose-induced changes. These findings support a role for AGE in high glucose-induced upregulation of $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells.