• Title/Summary/Keyword: Nitrite ion detection

Search Result 13, Processing Time 0.022 seconds

Turn-On Type Fluorogenic and Chromogenic Probe for the Detection of Trace Amount of Nitrite Ion in Water

  • Saleem, Muhammad;Abdullah, Razack;Hong, In Seok;Lee, Ki-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.389-393
    • /
    • 2013
  • A rhodamine B-based fluorescent probe for nitrite ion ($NO{_2}^-$) has been designed, synthesized, characterized and its properties for recognition of $NO{_2}^-$ were studied. Nearly non fluorescent probe upon reaction with nitrite ion significantly triggered the fluorescence. Fluorescence response is based on ring opening of the spirolactam of rhodamine B phenyl hydrazide showing maximum absorbance at 552 nm and maximum emission at 584 nm. Probe 3 exhibited high sensitivity and extreme selectivity for nitrite ion over other common ions and oxidants ($Cl^-$, $ClO^-$, $ClO{_2}^-$, $ClO{_3}^-$, $ClO{_4}^-$, $SO{_4}^{2-}$, $SiO{_3}^{2-}$, $NO{_3}^{2-}$, $CO{_3}^{2-}$) examined in methanol water (1:1, v/v) at pH 7.0. The probe might be a new efficient tool for detection of nitrite ion in natural water and biological system.

Amperometric Determination of Nitrite at Poly(Methylene Blue)-Modified Glassy Carbon Electrode

  • Xu, Guang-Ri;Xu, Guifang;Xu, Ming-Lu;Zhang, Zhengqing;Tian, Yuan;Choi, Han-Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.415-419
    • /
    • 2012
  • Electrochemical characteristics of nitrite ion were investigated at a poly(methylene blue)-modified glassy carbon electrode by cyclic voltammetry and differential pulse voltammetry. The poly(methylene blue)-modified glassy carbon electrode exhibited enhanced anodic signals for nitrite. The effects of key parameters on the detection of nitrite were evaluated at the modified electrode, such as pH, accumulation time, and scan rate. Under optimum condition, the chemically modified electrode can detect nitrite in the concentration range $2.0{\times}10^{-6}$ to $5.0{\times}10^{-4}$ M with the detection limit of $2.0{\times}10^{-6}$ M and a correlation coefficient of 0.999. The detection of nitrite using the chemically modified electrode was not affected by common ions such as $Na^+$, $K^+$, $Ca^{2+}$, $Cl^-$, $HPO_4^{2-}$ and $H_2PO_4^- $. The modified electrode showed good stability and reproducibility. The practical application of the present method was successfully applied to the determination of nitrite ion in cabbage samples.

Gas-Sensing Membrane Electrodes for the Determination of Dissolved Gases (I). Continuous-Automated Determination of Nitrite Ion Using Tubular PVC Membrane Type of pH Electrode (용해기체 분석용 기체 감응막 이온선택성 전극 (제 1 보). 관형 PVC 막 pH 전극을 이용한 아질산이온의 연속·자동화 정량)

  • Heung Lark Lee;Jong Hoon Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.388-398
    • /
    • 1989
  • A continuous-automated method for the determination of nitrite ion using gas-sensing membrane electrode was developed. The pH electrode of tubular PVC membrane type was used as a detector of this system. The slope of linear response of the electrode measured at optimum conditions for the continuous-automated determination of nitrite ion was 63.5 mV/decade. The concentration range of linear response and detection limit were 2.5 ${\times}10^{-4}{\sim}\;7.5{\times}10^{-2}$M and $8.0{\times}10^{-5}$M, respectively. This detection system was not only less interfering to acidic gas species than other methods but also less time consumable for determination.

  • PDF

A Study on the Constitution and the Application of FIA System for Measurement of Nitrite (The Field Water Samples at Kwangju) (아질산성질소 축정용 FIA의 제작 및 용용에 관한 연구 (광주광역시 광주천 시료를 대상으로))

  • Rhee, J.S.;Park, W.C.;Lee, S.W.;Kim, Y.J.
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.283-290
    • /
    • 2002
  • In this study, home-made detection system by means of noble FIA is introduced on the measurement of toxic nitrite in the water samples collected from the area of Kwangju. As the standard calibration between 30 to 1000 ppb, the linearity has been shown more than 0.9999 as the correlation coefficient($R^2$) with the detection limit 1.5 ppb(S/N>2). The distribution of sample concentration was monitored as N.D. - 123 ppb which is wide span of concentrations in field water samples. The low level of nitrite is hardly detectable with other expensive sophisticated instruments including ion chromatography. Whereas the result of high concentration brings forth the necessity monitoring constantly our precious water resources. Successfully, the FIA system has played a very important role detecting wide span of nitrite in water sample. This technique can be adopted for controlling our environment in the near future.

Determination of Some Inorganic Anions in Saline Water by Ion Chromatography with UV Detection (이온크로마토그래피를 이용한 소금물중의 무기음이온들의 분리정량)

  • Han, Sun Ho;Park, Yang Soon;Park, Soon Dal;Joe, Kih Soo;Eom, Tae Yoon
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.99-104
    • /
    • 1999
  • A stepwise gradient elution with two wavelengths detection was performed for the separation and determination of some anions in saline water. The eight anions such as iodate, bromate, nitrite, bromide, nitrate, chromate, iodide and thiocyanate were successfully separated using AS-7 column and sodium chloride/sodium phosphate buffer solution as an eluant within 40 min. The separation behaviors of anions were studied at various sodium chloride concentrations. The peak shapes of anions of bromate, nitrite, bromide and nitrate gradually broadened as the concentration of sodium chloride increased until 1.0 M in the sample solutions. However, no effect was observed in the peak shapes of chromate, iodide and thiocynate. A good linearity was obtained at the range of ppm(mg/L). The detection limit was proved to be $10-720{\mu}g/L$ for the eight anions with $50{\mu}L$ injection volume. This method was applied to the determination of $Br^-$, ${NO_3}^-$ and $I^-$ in sea water.

  • PDF

A Study on the Determination of$N(NO_2^-),\;N(NO_3^-)$and$N(NH_4^+)$in Environmental Samples by Flow Injection Analysis (흐름주입분석법에 의한 환경시료 중$N(NO_2^-),\;N(NO_3^-)$$N(NH_4^+)$의 정량분석에 관한 연구)

  • Rhee, Jae Seong;Kim, Young Sang;Jung, Yun Hee;Rhee, Hee Jung
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.5
    • /
    • pp.256-265
    • /
    • 1997
  • A rapid and sequential method was studied, which can determine nitrite, nitrate and ammonium ion in soil or water samples with flow injection analysis. Geometric factors including injection volume, length of the reaction coil and flow rate of carrier solution were investigated prior to sample measurement. Nitrite was determined at 540 nm by Griess reaction producing azo dye between N-(1-naphthylethylenediamine dihydrochloride) and sulfanilamide. Nitrate was also measured under the help of reduction mechanism toward nitrite with hydrazine. Ammonium was analyzed at 440 nm with Nessler's reagent. At the optimum condition, the detection limit(S/N=3) has been shown 0.1 ㎍/mL N(NO2-), 0.4 ㎍/mL N(NO3-) and 0.3 ㎍/mL N(NH4+) respectively. The results measured by colorimetry, ion chromatography and FIA were compared showing 80%-125% reasonable match each other. Injection throughput rate could be performed better than 30 times per hour.

  • PDF

Correlationship of Vertical Distribution for Ammonia Ion, Nitrate Ion and Nitrifying Bacteria in a Fixed Bed Nitrifying Biofilm

  • Choi, Gi-Chung;Byun, Im-Gyu
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1455-1462
    • /
    • 2012
  • The vertical distributions of nitrifying bacteria in aerobic fixed biofilm were investigated to evaluate the relationship between nitrification performance and microbial community at different HRT. Fluorescent in situ hybridization (FISH) and portable ion selective microelectrode system were adopted to analyze microbial communities and ions profiles according to the biofilm depth. Cilia media packed MLE (Modified Ludzack-Ettinger) like reactor composed of anoxic, aerobic I/II was operated with synthetic wastewater having COD 200 mg/L and $NH_4{^+}$-N mg/L at HRT of 6 hrs and 4 hrs. Total biofilm thickness of aerobic I, II reactor at 4 hrs condition was over two times than that of 6 hrs condition due to the sufficient substrate supply at 4 hrs condition (6 hrs; aerobic I 380 ${\mu}m$ and II 400 ${\mu}m$, 4 hrs; aerobic I 830 ${\mu}m$ and II 1040 ${\mu}m$). As deepen the biofilm detection point, the ratio of ammonia oxidizing bacteria (AOB) was decreased while the ratio of nitrite oxidizing bacteria (NOB) was maintained similar distribution at both HRT condition. The ratio of AOB was higher at 4 hrs than 6 hrs condition and $NH_4{^+}$-N removal efficiency was also higher at 4 hrs with 89.2% than 65.4% of 6 hrs. However, the ratio of NOB was decreased when HRT was reduced from 6 hrs to 4 hrs and $NO_2{^-}$-N accumulation was observed at 4 hrs condition. Therefore, it is considered that insufficient HRT condition could supply sufficient substrate and enrichment of AOB in all depth of fixed biofilm but cause decrease of NOB and nitrite accumulation.

A Study on the Analysis of Well-water in a Suburban Area in Taegu City (대구시(大邱市) 일부지역(一部地域) 우물물의 위생학적(衛生學的) 고찰(考察))

  • Yeo, Woon-Chae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.7 no.2
    • /
    • pp.327-332
    • /
    • 1974
  • Wells are perticularly able to be a source of water-borne infections disease in the army society. Owing to untreated drinking water, high indidence of water-borne diseases are encounted in Korea. This study was carried out to evaluate the physicochemical and bacteriological states of 298 wells in army camps around Daegu city during a year from January to November, 1974. Main findings are summerized as follows: 1. Turbidity, Colorness & odor was within normal range in all samples. 2. Reaction of pH, cnsumption of KMnO4, total hardness and chlorine ion as over almost within normal range. 3. Free Ammonia was detected to 33.2% positive, and nitrite, 45.5% positive. 4. In the bacteriological test 40.3% of all samples were over the standard limit on E. Coli. 5. In comparison of nitrate and E. Coli detection, 60.1% of nitrite was over the standard limit out of the positive cases detected E. Coli. and all of E. Coli were over the standard limit out of the positive cases of nitrite. 6. The contamination was very remarkable in the spring and summer, and very diminished in the autumn and winter.

  • PDF

Analysis of Inorganic Acids by Capillary Zone Electrophoresis (Capillary Zone Electrophoresis를 이용한 음이온 동시분석에 관한 연구)

  • Park, Sung-Woo;Jin, Kwang-Ho;You, Jae-Hoon;Kim, Dong-Hwan;Seo, Baeseuk;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.213-221
    • /
    • 1998
  • The determination of inorganic anions by capillary zone electrophoresis is reported. A ten component synthetic mixture of anions of bromide, chloride, fluoride, nitrite, nitrate, sulfite, sulfate, perchlorate, chlorate and chlorite was separated by the capillary column and detected by indirect UV method. The running buffer contained 5 mM ammonium dichromate, 10 mM ammonium acetate, 20 mM diethylenetriamine, 10% methanol solution at pH 9.3. A potential of 15 kV at the cathode (reversed polarity) was utilized for the separation of inorganic anions. A complete separation of anions was achieved in less then 10 min and the applicabilities of the method for the analysis of real samples was demonstrated. We compare the concentration of anions in toluene inhaled humen's urine and in postmortem bloods obtained by capillary zone electrophoresis and ion chromatograph.

  • PDF

Development of Ion-Selective Electrodes for Agriculture

  • Yang-Rae Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.153-153
    • /
    • 2022
  • There is a growing need to develop ion sensors for agriculture. As a result, several technologies have been developed, such as colorimetry, spectrophotometry, and ion-selective electrode (ISE). Among them, ISE has some advantages compared to others. First, it does not require pre-treatment processes and expensive equipment. Second, it is possible for the portable detection system by introducing small-sized electrodes. Finally, real-time and multiple detections of several ions are pursued. It is well-known that N, P, and K nutrients are critical for crop growth. With the development of agriculture techniques, the importance of soil nutrient analysis has attracted much attention for cost-effective and eco-friendly agriculture. Among several issues, minimizing the use of fertilizers is significant through quantitative analysis of soil nutrients. As a result, it is highly important to analyze certain nutrients, such as N (ammonium ion, nitrate ion, nitrite ion), P (dihydrogen phosphate ion, monohydrogen phosphate ion), and K (potassium ion). Therefore, developing sensors for accurate analysis of soil nutrients is highly desired. n this study, several ISEs have been fabricated to detect N, P, and K. Their performance has been intensively studied, such as sensitivity, selectivity coefficient, and concentration range, and compared with commercialized ISEs. In addition, preliminary tests on the in-situ N, P, and K monitoring have been conducted inside the soil.

  • PDF