• 제목/요약/키워드: Nitrification-Denitrification

검색결과 290건 처리시간 0.028초

Theoretical Analysis for Nitrogen Removal in Step Feed Oxic-Anoxic-Oxic Process

  • Lee, Byung-Dae;Kim, Il-Chool
    • 한국응용과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.355-362
    • /
    • 2008
  • One of the popular domestic sewage treatment process (called step feed oxic-anoxic-oxic process) for nitrogen removal was analyzed in this study by theoretical analysis based on the nitrification and denitrification reaction. Total nitrogen removal efficiency was suggested by considering influent qualities(i.e., ammonia, nitrite, nitrate, alkalinity, and COD). Total nitrogen removal efficiency depends on r (influent allocation ratio). In the case that all influent components are enough, the total nitrogen removal follows equation 100-b/(1+b), when r is 1/(1+b). Finally, it can be concluded that step feed oxic-anoxic-oxic process could be effective for nitrogen removal.

생물학적 영양염류 제거를 위한 돈사폐수의 반응 특성 (Reaction Characteristics of Piggery Wastewater for Biological Nutrient Removal)

  • 한동준;류재근;임연택;임재명
    • 환경위생공학
    • /
    • 제13권1호
    • /
    • pp.44-56
    • /
    • 1998
  • This study was performed to investigate the reaction characteristics of piggery wastewater for biological nutrient removal. The reaction characteristics were discussed the fraction of organics, the behavior of nitrogen, nitrification, denitrification, and the behavior of phosphorus. The fraction of readily biodegradable soluble COD was 11-12 percent. The ammonia nitrogen was removed via stripping, nitrification, autotrophic cell synthesis, and heterotrophic cell synthesis. The removal percents by each step were 12.1%, 68.9%, 15.0%, and 4.0%, respectively. Nitrification inhibition of piggery wastewater was found to occur at an influent volumetric loading rate over 0.2 NH$_{3}$-N kg/m$^{3}$/d. Denitrification rates were the highest in the raw wastewater and the lowest in the anaerobic effluent. The denitritation of piggery wastewater came out to be possible, and the rate of organic carbon consumption decreased about 10 percent. The phosphorus removed was released in the form of ortho-p in the aerobic fixed biofilm reactor, it was caused by autooxidation. The synthesis and release of phosphorus were related to the ORP and the boundary value for the phase change was about 170mV. In the synthesis phase, the phosphorus removal rate per COD removed was 0.023mgP$_{syn}$/mgCOD$_{rem}$. The phosphorus contents of the microorganism were 4.3-6.0% on a dry weight basis.

  • PDF

Anaerobic/oxic Treatment of Slurry-type Swine Waste

  • Won, Chul-Hee;Rim, Jay-Myoung
    • Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.203-209
    • /
    • 2008
  • This paper presents the experimental results in five months operation from a combined anaerobic/oxic system treating swine waste with average concentrations in organic matter and nitrogen of 7,930 mgCOD/L and 671 mgTKN/L, respectively. The system was formed using an upflow anaerobic sludge blanket (UASB) reactor and oxic reactor connected in series with a recycling line of oxic effluents to UASB for its denitrification. The UASB reactor was operated at an organic volumetric loading rate (VLR) of $2.1{\sim}4.5\;kgTCOD/m^3$/day and the removal efficiency of TCOD was $66.3{\sim}85.4%$. The overall removal efficiency of TCOD was more than 99%. The oxic reactor was operated at a nitrogen VLR of $0.10{\sim}0.20\;kgTKN/m^3$/day and the nitrification efficiency was 75%. However, the complete denitrification was observed in the UASB reactor that was due to the optimal temperature and sufficient carbon source. The overall removal rate of TN was about 80%. About 76.2% of the influent COD mass was accountable in a COD mass balance at a level of VLR $3.64\;kgCOD/m^3$/day. The production rate of methane was $0.32\;LCH_4/gCOD_{removed}$ when influent organics, VLR, were recorded by $3.4{\sim}4.5\;kgCOD/m^3$/day.

Design of Closed Seawater Recirculating Aquaculture System for Korean Rockfish Sebastes schlegeli Culture

  • Peng, Lei;Oh, Sung-Yong;Jo, Jae-Yoon
    • Ocean and Polar Research
    • /
    • 제26권1호
    • /
    • pp.102-111
    • /
    • 2004
  • Recirculating aquaculture system (RAS) consists of different treatment compartments that maintain water quality within the ranges commonly recommended for fish cultures. However, common RASs still exert considerable environmental impact since concentrations of organic matter and nutrients in their effluents are high. Compared with the traditional RAS, the model RAS developed here use a sedimentation basin for digestion purposes and then use the released volatile organic matter to stimulate a denitrification process. Different treatment compartments for solids, total ammonia nitrogen, and nitrate removal have been reviewed. This paper provides the basic information on designing different treatment compartments as well as the engineering criteria in closed seawater RAS, consisting of circular tanks for fish cultures; dual drain systems, sedimentation basins and foam fractionators for removal of solids; nitrification biofilters for TAN removal; denitrification biofilters for nitrate removal; and aerators for aeration. The main purpose is to outline a common procedure in designing of closed RAS for marine fish culture with an emphasis on easy management and low expense, as well as reduction of the environmental impact.

MLE 공정을 이용한 양돈폐수의 질소 제거 특성 (Nitrogen Removal Characteristics of Swine Wastewater when treating by MLE Process)

  • 박성균;박현수;이기공;정윤진
    • 상하수도학회지
    • /
    • 제14권2호
    • /
    • pp.147-156
    • /
    • 2000
  • In this study, the optimal operation parameters of MLE(Modified Ludzack-Ettinger) process treating the liquid supernatant separated from the slurry excreta of swine feedlot was studied as a promising biological treatment process. The nitrogen removal characteristics with different volume ratio between nitrification and denitrification reactor and the operational effect with different nitrogen loading rate, and different C/N($COD_{Cr}/TKN$) ratio were investigated. Based on the laboratory results, pilot MLE plant was operated to examine the effect of ambient temperature for five months including winter. The denitrification reactor which is 20% of total volume was proposed as the most optimal volume fraction for nitrification and denitrification. The optimum ratios of F/M and $F_N/M$ were increased with increase of the C/N ratio. However, optimum F/M ratio was changed more rapidly than $F_N/M$ ratio with increase of the C/N ratio. Therefore, MLE process is desirable to be controlled by F/M ratio in the range of high C/N ratio and by $F_N/M$ ratio in the range of low C/N ratio. Pilot MLE plant showed the higher removal efficiencies of COD and TKN in winter than in summer and was operated most stably at the temperature of $20{\sim}25^{\circ}C$ for mixed liqour.

  • PDF

Jet Loop 반응기를 이용한 화학비료폐수의 생물학적 질소제거 연구 (A Study on the Biological Nitrogen Removal of the Chemical Fertilizer Wastewater Using Jet Loop Reactor)

  • 서종환;이철승
    • 한국환경과학회지
    • /
    • 제14권2호
    • /
    • pp.157-165
    • /
    • 2005
  • This study was conducted to determine optimum design parameters in nitrification and denitrfication of chemical fertilizer wastewater using pilot plant, Jet Loop Reactor. The chemical fertilizer wastewater which contains low amounts of organic carbon and has a high nitrogen concentration requires a post-denitrfication system. Organic nitrogen is hydrolyzed above $86\%$, and the concentration of organic nitrogen was influent wastewater 126mg/L and of effluent wastewater 16.4mg/L, respectively. The nitrification above $90\%$ was acquired to TKN volumetric loading below $0.5\;kgTKN/m^3{\cdot}d$, TKN sludge loading below $0.1\;kgTKN/kgVSS{\cdot}d$ and SRT over 8days. The nitrification efficiency was $90\%$ or more and the maximum specific nitrification rate was $184.8\;mgTKN/L{\cdot}hr$. The denitrification rate was above $95\%$ and the concentration of $NO_3-N$ was below 20mg/L. This case was required to $3\;kgCH_3OH/kgNO_3-N$, and the effluent concentration of $NO_3^--N$ was below 20mg/L at $NO_3^--N$ volumetric loading below $0.7\;kgNO_3^--N/m^3{\cdot}d$ and v sludge loading below $0.12\;kgNO_3^-N/kgVSS{\cdot}d$. At this case, the maximum sludge production was $0.83\;kgTS/kgT-N_{re}$ and the specific denitrfication rate was $5.5\;mgNO_3-N/gVSS{\cdot}h$.

식종원 및 유기물 농도 변화에 따른 평판형 외기환원전극 미생물 연료전지의 질소 제거 (Nitrogen Removal in Flat-Panel Air-Cathode Microbial Fuel Cell according to Various Inoculum Sources and Organic Concentration)

  • 박영현;유재철;;이태호
    • 대한환경공학회지
    • /
    • 제38권12호
    • /
    • pp.635-640
    • /
    • 2016
  • 미생물연료전지(MFC)는 하 폐수내의 유기물로부터 전기를 생산할 수 있는 획기적인 기술이지만, 실용화를 위해서는 하 폐수 내의 질소를 제거할 수 있어야 한다. 본 연구에서는 두 개의 대면적 SEA (separator electrode assembly)로 구성된 평판형 외기환원전극 미생물연료전지(FA-MFC)를 이용하여 질산화 전배양의 유무와 식종원에 따른 총질소제거율을 평가하였다. 질산화 전배양 단계에서 FA-MFC의 질산화율은 식종원과는 무관하게 99% 이상을 나타냈다. 질산화 및 탈질 단계에서 300 mg-COD/L 이하의 낮은 유기물 농도에서는 전배양을 하지 않은 조건의 총질소제거율이 가장 높았다. 유기물 농도가 증가할수록 더 높은 총질소제거율을 나타냈으며, 유기물제거율은 모든 조건에서 95% 이상을 나타냈지만, 종속영양탈질에만 이용되지는 않은 것으로 판단된다. FA-MFC의 전기 발생량은 매우 낮았지만, 유기물과 질소를 동시에 제거할 수 있다는 장점이 있기 때문에 획기적인 하 폐수처리공법으로 발전시킬 수 있으리라 기대된다.

낮은 C/N 비에서 운영되는 SBR 유형의 Two-Sludge 공정의 질소 제거 특성 (Nitrogen Removal Characteristics in Two-Sludge System of SBR Type Using Sewage Wastewater of Low C/N Ratio)

  • 류홍덕;김학인;이상일
    • 대한환경공학회지
    • /
    • 제28권1호
    • /
    • pp.7-14
    • /
    • 2006
  • 본 연구에서는 도시하수를 이용하여 two-sludge 시스템방식의 SBR3 공정의 질소제거 효율 향상능을 평가하기 위해 기존 재래식 SBR 공정(SBR1) 및 분할주입(step-feeding)을 통해 탈질효율 향상을 도모한 SBR2 공정과의 비교 연구를 수행하였다. 도시하수를 대상으로 한 연구결과 two-sludge 시스템 방식으로 질산화 반응이 별도의 반응조에서 진행되며(external nitrification), 질산화된 질산염은 생흡착된 유기물을 이용하여 효과적으로 탈질되는 SBR3 공정이 SBR1 및 SBR2 반응조에 비해 T-N 제거효율면에서 우수함이 관찰되었다. SBR3 공정과 SBR1 및 SBR2 공정의 T-N 제거효율 차이는 낮은 C/N 비에서 더 크게 관찰되었으며 이는 생흡착 기작을 이용하는 SBR3 공정이 SBR1 및 SBR2 공정에 비해 탈질시 유기물 이용을 효율적으로 함을 의미한다. SBR3 공정은 T-N 유입 부하율에 따른 T-N 제거효율 관계에서도 SBR1 및 SBR2 공정에 비해 성능이 우수함을 관찰할 수 있었다. SBR3 공정이 SBR1 및 SBR2 공정에 비해 높은 T-N 부하율에서도 질소제거효율이 높은 원인은 SBR3 공정이 two-sludge 시스템 방식으로 운영됨에 따라 질화박테리아가 독립된 반응조에서 질산화를 수행하므로(external nitrification) 질산화 반응시 소요되는 수리학적 체류시간을 단축시킬 수 있기 때문이다.

생물막 여과반응기를 이용한 고도질소 제거법의 개발 (Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage)

  • 정진우;김성원;津野洋
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.