• Title/Summary/Keyword: Nitride passivation

Search Result 63, Processing Time 0.016 seconds

$SiN_x$ Film Deposited by Hot Wire Chemical Vapor Deposition Method for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지 적용을 위한 HWCVD $SiN_x$ 막 연구)

  • Kim, Ha-Young;Park, Min-Kyeong;Kim, Min-Young;Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • To develop high efficiency crystalline solar cells, the $SiN_x$ film for surface passivation and anti-reflection coating is very important and it is generally deposited by PECVD. In this paper, the $SiN_x$ film deposited by Hot-Wire chemical vapor deposition(HWCVD) that has no plasma damage was studied. First, to optimize the $SiN_x$ film deposition process, $SiH_4$ gas rate and substrate temperature were varied and then refractive index and thickness were measured. When $SiH_4$ gas rate was 22sccm and substrate temperature was $100^{\circ}C$, refractive index was 1.94 and higher than that of other process conditions. Second, the lifetime was measured by varying the annealing temperature and time. The annealing process was made from 5 to 30 minutes at $300{\sim}500^{\circ}C$. When the annealing temperature was $100^{\circ}C$ and time was 10minute, the lifetime was the highest. The lifetime of annealed samples was also measured after the firing process at $975^{\circ}C$. Although the lifetime of all samples was decreased by firing process, the lifetime of annealed samples before the firing process was higher than that of fired samples only. Finally, the characteristics of solar cells with HWCVD $SiN_x$ film were measured.

Electrics and Noise Performances of AlGaN/GaN HEMTs with/without In-situ SiN Cap Layer (In-situ SiN 패시베이션 층에 따른 AlGaN/GaN HEMTs의 전기적 및 저주파 잡음 특성)

  • Yeo Jin Choi;Seung Mun Baek;Yu Na Lee;Sung Jin An
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.60-63
    • /
    • 2023
  • The AlGaN/GaN heterostructure has high electron mobility due to the two-dimensional electron gas (2-DEG) layer, and has the characteristic of high breakdown voltage at high temperature due to its wide bandgap, making it a promising candidate for high-power and high-frequency electronic devices. Despite these advantages, there are factors that affect the reliability of various device properties such as current collapse. To address this issue, this paper used metal-organic chemical vapor deposition to continuously deposit AlGaN/GaN heterostructure and SiN passivation layer. Material and electrical properties of GaN HEMTs with/without SiN cap layer were analyzed, and based on the results, low-frequency noise characteristics of GaN HEMTs were measured to analyze the conduction mechanism model and the cause of defects within the channel.

Design and Fabrication of the 0.1${\mu}{\textrm}{m}$ Г-Shaped Gate PHEMT`s for Millimeter-Waves

  • Lee, Seong-Dae;Kim, Sung-Chan;Lee, Bok-Hyoung;Sul, Woo-Suk;Lim, Byeong-Ok;Dan-An;Yoon, yong-soon;kim, Sam-Dong;Shin, Dong-Hoon;Rhee, Jin-koo
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2001
  • We studied the fabrication of GaAs-based pseudomorphic high electron mobility transistors(PHEMT`s) for the purpose of millimeter- wave applications. To fabricate the high performance GaAs-based PHEMT`s, we performed the simulation to analyze the designed epitaxial-structures. Each unit processes, such as 0.1 m$\mu$$\Gamma$-gate lithography, silicon nitride passivation and air-bridge process were developed to achieve high performance device characteristics. The DC characteristics of the PHEMT`s were measured at a 70 $\mu$m unit gate width of 2 gate fingers, and showed a good pinch-off property ($V_p$= -1.75 V) and a drain-source saturation current density ($I_{dss}$) of 450 mA/mm. Maximum extrinsic transconductance $(g_m)$ was 363.6 mS/mm at $V_{gs}$ = -0.7 V, $V_{ds}$ = 1.5 V, and $I_{ds}$ =0.5 $I_{dss}$. The RF measurements were performed in the frequency range of 1.0~50 GHz. For this measurement, the drain and gate voltage were 1.5 V and -0.7 V, respectively. At 50 GHz, 9.2 dB of maximum stable gain (MSG) and 3.2 dB of $S_{21}$ gain were obtained, respectively. A current gain cut-off frequency $(f_T)$ of 106 GHz and a maximum frequency of oscillation $(f_{max})$ of 160 GHz were achieved from the fabricated PHEMT\\`s of 0.1 m$\mu$ gate length.h.

  • PDF