• Title/Summary/Keyword: Nitrate reduction

Search Result 388, Processing Time 0.027 seconds

Nitrate Reduction and Pigment Formation of Chinese-Style Sausage Mixes Caused by Micrococcaceae

  • Guo, H.L.;Chen, M.T.;Liu, D.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1173-1177
    • /
    • 2000
  • This study investigated the nitrate reduction ability of Micrococcaceae on pigment formation in Chinese- style sausage. One hundred ppm sodium nitrite and 150 ppm sodium nitrate was added asepticly to ground pork which was then inoculated with $10^7CFU/g$ of either Micrococcus varians, Staphylococcus carnosus or Staphylococcus xylosus. All samples were cured at $20{^{\circ}C}$ or $30{^{\circ}C}$ for 3 days and then color, residue nitrite, nitrosyl pigment and residue nitrate were determined. The results indicated that samples inoculated with S. xylosus had higher a- and b- values due to nitrate reduction and pigment production after 3 days curing and these values were higher at the higher curing temperature. The nitrosyl pigment of the samples with S. xylosus had highest values after 3 days curing at both $20{^{\circ}C}$ and $30{^{\circ}C}$. However, sample inoculated with S. carnosus and S. xylosus had lower nitrate contents than the sample inoculated with M. varians. At $30{^{\circ}C}$ as well as S. carnosus and M. varians had a stronger decreasing in nitrate concentration during curing at $20{^{\circ}C}$. Moreover, samples inoculated with S. xylosus and S. carnosus had a higher residual nitrite content during curing at $20{^{\circ}C}$ or $30{^{\circ}C}$. In conclusion, two Staphylococci strains tested were most optimum starter cultures for improving pigment formation during Chinese-style sausage curing.

Nitrate Metabolism Affected by Osmotic Stress and Nitrate Supply Level in Relation to Osmoregulation

  • Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.77-84
    • /
    • 2000
  • Eight-week old perennial ryegrass (Lolium perenne L. cv. Reveille) plants were exposed to different NO3-concentrations or osmotic stress with NaCI. Previously labeled "N was chased during 14 days of non-labeled'NO3 feeding in order to investigate NO3 metabolism in relation to osmoregulation. The short termmeasurement of osmotic potential showed that the extemal concentration of Nos- had not great effect on theosmotic potential, but that osmotic adjustment was observed in NaCl-treated plants. Total uptake of NO 3 - waslargely increased by increasing supply level of NO3 while it was depressed by exposing to osmotic stress.Nitrate reduction increased to more than 29% by increasing extemal NO,- concentration from 1 mM to 10mM. When osmotically stressed with NaCI, nitrate reduction was depressed to about 37% as compared to thecontrol. The decrease in translocation of reduced N into leaves was also observed in NaCl exposed plants. Inthe medium exposed to 10 mM NO,., osmotic contribution of nitrate to cumulative osmotic potential wasdecreased, and it was osmotically compensated with soluble carbohydrate. When osmotically stressed withNaC1, the contribution of chloride was much higher than that of nitrate. The present data indicate that N03-in plant tissues, factually affected by the assimilation of this ion, plays an active role in osmotic regulation incorrelation with other osmotica such carbohydrate and chloride.(Key words : Nitrate metabolism, Osmotic stress, Nitrate supply level, Osmoregulation)ate supply level, Osmoregulation)

  • PDF

The Reduction Properties of Nitrate in Water with Palladium and Indium on Aluminum Pillared Montmorillonite Catalyst (팔라디움과 인디움을 담지한 Al 층간가교 몬모릴로나이트 촉매의 수중 질산성질소 환원 특성)

  • Jeong, Sangjo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.621-631
    • /
    • 2018
  • In this study, catalyst was made through incipient wetness method using palladium (Pd) as noble metal, indium (In) as secondary metal, and montmorillonite (MK10) and Al pillared montmorillonite (Al-MK10) as supporters. The nitrate reduction rate of the catalysts was measured by batch experiments where H2 gas was used as reducing agent and formic acid as pH controller. Transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were all used to determine the elemental distribution of Pd, In, Al, and Si on catalysts. It was observed that Al pillaring increased the Al/Si elemental composition ratio and point of zero charge of MK10, but decreased its BET specific surface area and pore volume. The nitrate reduction rate of Al-MK10 Pd/In was 2.0 ~ 2.5 times higher than that of MK10 Pd/In using artificial groundwater (GW) in ambient temperature and pressure. Nitrate reduction rates in GW were 1.2 ~ 1.7 times lower than those in distilled deionized water (DDW). Nitrate reduction rates in acidic conditions were higher than those in neutral condition in both GW and DDW. The amount of produced NH3-N over degraded NO3- at acid conditions was lower than that of neutral condition. Even though the leaching of Pd after reaction was measured in DDW it was not detected when both Al-MK10 Pd/In and MK10 Pd/In were used in GW. The modification of montmorillonite as a supporter significantly increased the reductive catalytic activities of nitrates. However, the ratio of producing ammonia by-products to degraded nitrates in ambient temperature and pressure was similar.

A Study on Enhancement of Nitrate Removal Efficiency using Surface-Modified Zero-Valent Iron Nanoparticles (표면개질된 영가철 나노입자를 이용한 질산성 질소 제거율 향상에 대한 연구)

  • Lim, Taesook;Cho, Yunchul;Cho, Changhwan;Choi, Sangil
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.517-524
    • /
    • 2016
  • In order to treat groundwater containing high levels of nitrate, nitrate reduction by nano sized zero-valent iron (nZVI) was studied using batch experiments. Compared to nitrate removal efficiencies at different mass ratios of $nitrate/Fe^0$, the removal efficiency at the mass ratio of 0.02% was the highest(54.59%). To enhance nitrate removal efficiency, surface modification of nZVI was performed using metallic catalysis such as Pd, Ni and Cu. Nitrate removal efficiency by Cu-nZVI (at $catalyst/Fe^0$ mass ratio of 0.1%) was 66.34%. It showed that the removal efficiency of Cu-nZVI was greater than that of the other catalysts. The observed rate constant ($k_{obs}$) of nitrate reduction by Cu-nZVI was estimated to $0.7501min^{-1}$ at the Cu/Fe mass ratio of 0.1%. On the other hand, TEM images showed that the average particle sizes of synthetic nZVI and Cu-nZVI were 40~60 and 80~100 nm, respectively. The results imply that catalyst effects may be more important than particle size effects in the enhancement of nitrate reduction by nZVI.

Direct Bio-regeneration of Nitrate-laden Ion-exchange Resin (질산성질소에 파과된 이온교환수지의 생물학적 직접 재생)

  • Nam, Youn-Woo;Bae, Byung-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.777-781
    • /
    • 2013
  • Ion-exchange technology is one of the best for removing nitrate from drinking water. However, problems related to the disposal of spent brine from regeneration of exhausted resins must be overcome so that ion exchange can be applied more widely and economically, especially in small communities. In this background, a combined bio-regeneration and ion-exchange system was operated in order to prove that nitrate-laden resins could be bio-regenerated through direct contact with denitrifying bacteria. A nitrate-selective A520E resin was successfully regenerated by denitrifying bacteria. The bio-regeneration efficiency of nitrate-laden resins increased with the amount of flow passed through the ion-exchange column. When the fully exhausted resin was bio-regenerated for 5 days at the flowrate of 30 BV/hr and MLSS concentration of $125{\pm}25mg/L$, 97.5% of ion-exchange capacity was recovered. Measurement of nitrate concentrations in the column effluents also revealed that less than 5% of nitrate was eluted from the resin during 5 days of bio-regeneration. This result indicates that the main mechanism of bio-regeneration is the direct reduction of nitrate by denitrifying bacteria on the resin.

The Effect of Fumed Silica on Nitrate Reduction by Zero-valent Iron (흄드 실리카가 영가철에 의한 질산성질소 환원에 미치는 영향)

  • Cho, Dong-Wan;Jeon, Byong-Hun;Kim, Yong-Je;Song, Ho-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.599-608
    • /
    • 2010
  • The effect of silica(fumed) on nitrate reduction by zero-valent iron(ZVI) was studied using batch experiment. The reduction of nitrate was tested in three different aqueous media including de-ionized water, artificial groundwater and real groundwater contaminated by nitrate. Kinetics of nitrate reduction in groundwater were faster than those in de-ionized water, and first-order rate constant($k_{obs}$) of ZVI/silica(fumed) process was about 2.5 time greater than that of ZVI process in groundwater. Amendment of Silica(fumed) also decreased ammonium presumably through adsorption on silica surface. The pHs in all processes increased due to oxidation of ZVI, but the increase was lower in groundwater due to buffering capacity of groundwater. The result also showed amount of reduced nitrate increased as initial nitrate concentration increased in groundwater. Separate adsorption isotherm experiments indicated that fumed silica itself had some degree of adsorption capacity for ammonium. The overall results indicated that silica(fumed) might be a promising material for enhancing nitrate reduction by ZVI.

Reduction of Nitroarenes with Hydrazine Monohydrate by Activated Nickel Nitrate-Zinc Catalyst (히드라진과 질산니켈-아연과의 반응에서 얻은 활성화시킨 촉매를 이용한 방향족 니트로화합물의 환원)

  • Yun, Tae Ho;Pyo, Sang Hyeon;Park, Mun Gyu;Han, Byeong Hui
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.5
    • /
    • pp.397-403
    • /
    • 1994
  • An activated catalyst prepared from a mixture of nickel nitrate hexahydrate with zinc in dry ethanol under reflux showed exceptional catalytic activity for the reduction of nitroarenes to the corresponding azoxy compounds exclusively in the presence of hydrazine monohydrate. However, when nickel nitrate hexahydrate was replaced by nickel chloride dihydrate with zinc, only the aminoarenes were formed in high yields. With unactivated catalyst, the reduction reaction from a mixture of nitroarenes, nickel nitrate or chloride, excess zinc and hydrazine monohydrate gave the corresponding azo, azoxy and amino compounds in much lower yields.

  • PDF

Effect of Electron Acceptor on Anaerobic Toluene Biodegradation in Rice Field and Tidal Mud Flat (논과 갯벌에서 톨루엔의 혐기성 생분해에 미치는 전자수용체의 영향)

  • 조경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.197-200
    • /
    • 2003
  • In oil-contaminated environments, anaerobic biodegradation of toluene depended on the concentration and distribution of terminal electron acceptor as well as the physicochemical properties such as DO concentration, redox potential and pH. This study showed the anaerobic biodegradation of toluene in two different soils by using nitrate reduction, ferric iron reduction, sulfate reduction and methanogensis. Toluene degradation rates in the soil samples taken from rice filed and tidal mud flat by nitrate reduction were higher than those by other processes. Tho soil samples from the two fields were enriched for 130 days by providing toluene as a sole carbon source and nitrate or sulfate as a terminal electron acceptor. The toluene degradation rates in the enriched denitrifying consortia obtained from the rice field and tidal mud flat soil were 310.7 and 200.6 $\mu$mol$ L^{-1}$ / $d^{-1}$, respectively. The toluene (legradation rates in the enriched sulfate-reducing consortia from the fields ranged fi-om 149.1 to 86.1$\mu$mol $L^{-1}$ / $d^{-1}$ .

The pH as a Control Parameter for Oxidation-Reduction Potential on the Denitrification by Ochrobactrum anthropi SY 509

  • Kim, Sung-Hong;Song, Seung-Hoon;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.639-642
    • /
    • 2004
  • The pH as a control parameter for oxidation-reduction potential (ORP) was investigated through the denitrification by Ochrobactrum anthropi SY509 under non-growing condition. The optimal pH of nitrate reductase was 7.0, and the minimal ORP level was -250 mV for the denitrification under aerobic condition. In the case of anaerobic condition, the optimal pHs of nitrate and nitrite reductase were shifted to 10.0 and 9.0, respectively, and the minimal ORP levels of nitrate and nitrite reductase were decreased to -370 mV and -340mV, respectively. In the case of alkaline pH and anaerobic condition, the denitrification efficiency of nitrate was increased up to about 2-fold over that of neutral pH and anaerobic condition. Therefore, the combined control of pH and ORP in the anaerobic condition is shown to be an important parameter in the biological denitrification process.