• Title/Summary/Keyword: Nitrate nitrogen

Search Result 1,009, Processing Time 0.03 seconds

A Study on the Prediction Model for Analysis of Water Quality in Gwangju Stream using Machine Learning Algorithm (머신러닝 학습 알고리즘을 이용한 광주천 수질 분석에 대한 예측 모델 연구)

  • Yu-Jeong Jeong;Jung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.531-538
    • /
    • 2024
  • While the importance of the water quality environment is being emphasized, the water quality index for improving the water quality of urban rivers in Gwangju Metropolitan City is an important factor affecting the aquatic ecosystem and requires accurate prediction. In this paper, the XGBoost and LightGBM machine learning algorithms were used to compare the performance of the water quality inspection items of the downstream Pyeongchon Bridge and upstream BanghakBr_Gwangjucheon1 water systems, which are important points of Gwangju Stream, as a result of statistical verification, three water quality indicators, Nitrogen(TN), Nitrate(NO3), and Ammonia amount(NH3) were predicted, and the performance of the predictive model was evaluated by using RMSE, a regression model evaluation index. As a result of comparing the performance after cross-validation by implementing individual models for each water system, the XGBoost model showed excellent predictive ability.

Evaluation of Fate of $NH_4{^+}$ of Condensed Molasses Solubles(CMS) in Soil Using by $^{15}N$-Tracer Method (중질소 추적자법을 이용한 Condensed Molasses Solubles(CMS) 함유 $NH_4{^+}$의 토양 중 행동 연구)

  • Lee, Sang-Mo;Choi, Woo-Jung;Yun, Seok-In;Choi, Young-Dae;Ro, Hee-Myong;Park, Jee-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.69-76
    • /
    • 2002
  • To study the behavior of $NH_4{^+}$ of CMS (condensed molasses solubles) in soil, a laboratory incubation experiment was conducted during a period of up to 21 days at $25^{\circ}C$. The $NH_4{^+}$ of CMS was labeled with $^{15}N$ and was applied to water-unsturated and water-saturated conditions. Soil pH was gradually decreased from 6.1 to 5.4 under unsaturated condition. However, soil pH was increased to 6.5 within 2 days under saturated condition and then was constant. The concentration of ammonium was decreased 3 times faster under unsaturated condition than under saturated condition. The concentration of nitrate was increased from 17.4 to $155.4mg\;kg^{-1}$ under unsaturated condition. But concentration of nitrate was kept with low(below $8.0mg\;kg^{-1}$) under saturated condition. During the incubation, 52.4% of $^{15}NH_4{^+}$ applied was existed in the form of $NO_3{^-}$ by nitrification under unsaturated condition. Most of applied nitrogen was immobilized within 4 days of incubation. On 21 days of the incubation the percentage of immobilized nitrogen derived from $^15NH_4{^+}$(NDFA) was 19.6% under unsaturated condition and 17.0% under saturated condition. The percentage of unaccounted N, which was lost by denitrification, was 28.4% under unsturated condition and 67.6% under saturated condition.

Use Efficiency of Nitrate Nitrogen Accumulated in Plastic Film House Soils under Continuous Vegetable Cultivation (시설재배(施設栽培) 토양(土壤)에 축적(蓄積)된 질산태질소(窒酸態窒素)의 유효도(有效度))

  • Song, Yo-Sung;Kwak, Han-Kang;Huh, Beom-Lyang;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.347-352
    • /
    • 1996
  • These experiments were conducted to monitor the change in $NO_3{^-}-N$ in a plastic film house where $NO_3{^-}-N$ have been accumulated in the soil of high level (about 370 mg/kg) The objective of this study was to obtain the information needed to establish the N Fertilizer recommendation based on the available N content in the soil for vegetable cultivation. The cultivated crops were chinese cabbage in the spring, lettuce in the summer, and chinese cabbage in the autumn. The crops were cultivated with and without N application. The concentration of $NO_3{^-}-N$ in the soil was analysed before and after the cultivation of each crop. When $NO_3{^-}-N$ in the soil is as high as 370 mg/kg. even without N application, the yield of the first season crop, cabbage in the spring was 175 ton/ha and that of second season crop, lettuce in the summer was 53 ton/ha. These yields were comparable with those obtained under the application of N fertilizer: meaning that no N application would be needed for those crops when $NO_3{^-}-N$ in the soil is as high as 370 mg/kg. The yield of third crop, cabbage in the autumn was higher under N application than that under no N application by 62%. The fate of $NO_3{^-}-N$ in the soil differed along with the crop sequence. In the first crop, 14.5% was absorbed by crop, 25.4% remained in the soil and 60.1% was unaccounted for. In the second season, 25.3% was absorbed by crop, 51.8% remained in the soil and 22.9% was unaccounted for. In the third crop, 62.8% was absorbed by crop, 19.4% remained in the soil and 16.8% was unaccounted for.

  • PDF

Behavior of NO3-N and Accompanying Cations Derived from Urea under Upland Condition -I. Leaching of NO3-N and Accompanying Cations (요소유래(尿素由來) NO3-N 및 동반(同伴) 양(陽)이온의 토양(土壤) 중 행동(行動) -I. NO3-N 동반(同伴) 양(陽)이온의 용탈(溶脫))

  • Yun, Sun-Gang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.15-20
    • /
    • 1994
  • Lysimeter experiments were conducted to elucidate the behavior of $NO_3-N$ derived from urea applied at different rates and accompanying cations in soils and to further provide fundamental information of rational nitrogen-fertilizer management. Urea was applied at rates of 0, 7, 14, 21, 28 and 35kg N/10a to sandy loam pakced into PVC cylindrical lysimeter(vol. : $0.187m^2$, area $0.43m^2$). Leachates from the lysimeter with or without grass grown were collected periodically and analyzed for $NO_3$ and cations. Grass growth and yield responses to N fertilization were also examined. Dry matter yield and nitrogen uptake increased with the urea application rate. The amount of leachate from the lysimeter was negatively correlated with urea application ratesl($r=-0.95^{**}$). The nitrate leaching loss with grass grown was 230 g N/10a at the maximum rate of 35kg N/10a, but the highest leaching loss was observed as 1,607 g N/10a from the bare plot. Increase in urea application rates decreased significantly leaching losses of Ca, Mg, K and Na(>0.01). The highest leaching loss from the bare plot was observed for Ca but only 6.5% of exchangeable form and 14.0% for K from the grass plot respectively. Equivalent ratio of cations to nitrate leached were 3.2 % for the bare plot and the ratio for the grass plot increased with the urea application rate, ranging from 18.6 to 32.7%.

  • PDF

Chemical Characteristics of Shallow Groundwater in an Agricultural District of Hyogyo-ri Area, Chungnam Province (충남 효교리 농업지역 천부지하수의 화학적 특성)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Choi, Eun-Gyeong;Kim, HyunKoo;Kim, MoonSu;Park, Ki-Hoon;Lim, Woo-Ri
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.630-646
    • /
    • 2020
  • In rural areas, nitrate-nitrogen (NO3-N) pollution caused by agricultural activities is a major obstacle to the use of shallow groundwater as domestic water or drinking water. In this study, the water quality characteristics of shallow groundwater in Hyogyo-ri agricultural area of Yesan-gun, Chungcheongnam-do province was studied in connection with land use and chemical composition of soil layer. The average NO3-N concentration in groundwater exceeds the domestic and agricultural standard water qualities of Korea and is caused by anthropogenic sources such as fertilizer, livestock wastewater, and domestic sewage. The groundwater type mainly belongs to Ca(Na)-Cl type, unlike Ca-HCO3 type, a general type of shallow groundwater. The average NO3-N concentration (7.7 mg L-1) in groundwater in rice paddy/other (upstream, ranch, and residential) area is lower than the average concentration (22.8 mg L-1) in farm field area, due to a lower permeability in paddy area than that in farm field area. According to the trend analysis by the Mann-Kendall and Sen tests, the NO3-N concentration in the shallow groundwater shows a very weak decreasing trend with ~0.011 mg L-1yr-1 with indicating almost equilibrium state. Meanwhile, SO42- and HCO3- concentrations display annual decreasing trend by 15.48 and 13.15%, respectively. At a zone of 0 to 5 m below the surface, the average hydraulic conductivity is 1.86×10-5 cm s-1, with a greater value (1.03×10-4cm s-1) in sand layer and a smaller value (2.50×10-8 cm s-1) in silt layer.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Effects of $\textrm{NO}_3$-N:$\textrm{NH}_4$-N Ratio and Elevated $\textrm{CO}_2$ on Growth and Quality of Lactuca sativa L. in Nutrient Film Technique (NFT재배에서 $\textrm{CO}_2$ 시용과 배양액의 $\textrm{NO}_3$:$\textrm{NH}_4$비율이 결구상추의 생육 및 품질에 미치는 영향)

  • 원선이;조영렬;이용범
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.120-130
    • /
    • 1996
  • Crisphead lettuce(Lactuca sativa L.) was grown in NFT to investigate the effects of NO$_3$-N and NH$_4$-N ratio in nutrient solution and elevated $CO_2$ treatment in the crisphead lettuce growth. This experiment has been conducted under three different ratios of NO$_3$-N:NH$_4$-N(100:0, 75:25, 50:50) with two $CO_2$ concentration (control, 1500ppm ). The results are as follows; 1. In the case of not controlling pH and EC in nutrient solution, pH was gradually increased in NO$_3$-N:NH$_4$-N=100:0 treatment but rapidly decreased in the nutrient solution 2. Daily changes of NO$_3$-N and NH$_4$-N were observed without controlling the nutrient solution. In the treatments of NO$_3$-N:NH$_4$-N ratios were 75:25 and 50:50, NO$_3$-N absorption rates were 27.7% and 26.1%, while NH$_4$-N absorption rates were 87.9% and 71.2%, respectively. 3. There was little differences in total nitrogen of leaves. However phosphorus, potassium, calcium and magnesium contents were highly shown in the treatment of $CO_2$ 1500ppm and 100:0 ratio of NO$_3$-N:NH$_4$-N. 4. Higher $CO_2$ assimilation rate was shown in plants grown under $CO_2$ 1500ppm and 100:0 ratio of NO$_3$-N:NH$_4$-N. It dropped significantly with the increase of NH$_4$- N rates in nutrient solution. 5. Fresh weight, leaf number, root length and root weight of crisphead lettuce were far better in the treatment of $CO_2$ 1500ppm and 100:0 ratio of NO$_3$-N:NH$_4$-N. Growth differences by $CO_2$ elevation were not shown in other NO$_3$-N:NH$_4$-N treatments. 6. The highest nitrate contents of leaves were shown in NO$_3$-N single treatment but shown the lowest vitamin C contents. Nitrate contents of leaves were decreased by $CO_2$ but the effect was slight treatment.

  • PDF

Cultural Characteristics of Ectomycorrhizal Mushrooms

  • Jeon, Sung-Min;Ka, Kang-Hyeon
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.16-16
    • /
    • 2015
  • Ectomycorrhizal (ECM) mushrooms play a major role in plant growth promotion through symbiotic association with roots of forest trees. They also provide an economically important food resource to us and therefore they have been studied for their artificial cultivation for decades in Korea. We have secured bio-resources of ECM mushrooms from Korean forests and performed their physiological studies. To investigate the cultural characteristics, the fungi were cultured under different conditions (medium, temperature, pH of the medium, inorganic nitrogen source). More than 90% of total 160 strains grew on three solid media (potato dextrose agar, PDA; sabouraud dextrose agar, SDA; modified Melin-Norkrans medium, MMN). The rate of mycelial growth on malt extract agar (MEA) was lower than those of three media (PDA, SDA, MMN). None of the Tricholomataceae strains grew on MEA. Many strains of ECM mushrooms were able to grow at the temperature range of $15{\sim}25^{\circ}C$ on PDA, while they showed poor growth at $10^{\circ}C$ or $30^{\circ}C$. In particular, the growth rates of both Gomphaceae and Tricholomataceae were significantly lower at $10^{\circ}C$ than at $30^{\circ}C$. The optimal pH of many strains was pH 5.0 when they cultured in potato dextrose broth (PDB). Fifty-seven percent of tested strains grew well on medium containing ammonium source than nitrate source. Many strains of Tricholomataceae showed a notable growth on ammonium medium than nitrate medium. Twenty-three percent of strains preferred nitrate source than ammonium source for their mycelial growth. The production and activity of two enzymes (cellulase and laccase) by ECM fungi were also assayed on the enzyme screening media containing CMC or ABTS. Each strains exhibited different levels of enzymatic activities as well as enzyme production. The number of laccase-producing strains was less than that of cellulase-producing strains. We found that 77% of tested strains produced both cellulase and laccase, whereas 2% of strains did not produce any enzymes. The morphological characteristics of mycelial colony were also examined on four different solid media. Yellow was a dominant color in mycelial colony and followed by white and brown on all culture media. ECM mushrooms formed mycelial colonies with a single or multiple colors within a culture medium depending on the strains and culture media. The most common shape of mycelial colony was a circular form on all media tested. Other families except for Amanitaceae formed an irregular colony on MMN than PDA. All strains of Tricholomataceae did not form a filamentous colony on all media. The pigmentation of culture media by mycelial colonies was observed in more than 50% of strains tested on both PDA and SDA. The degree of pigmentation on PDA or SDA was higher than MMN and brown color was dominant than yellow color. The production of exudates from mycelial colony was higher on PDA than MMN. Brown exudates were mainly produced by many strains on PDA or SDA, whereas transparent exudates were mainly produced by strains on MMN. We observed the mycelial colonies with a single or multiple textures in just one culture plate. Wrinkled or uneven colony surfaces were remarkably observed in many strains on PDA or SDA, while an even colony surface was observed in many strains on MMN. Sixty percent of Tricholomaceae strains formed wrinkled surface on PDA. However, they did not form any wrinkle on MMN plate. Cottony texture was observed in mycelia colonies of many strains. Velvety texture was often observed in the mycelial colonies on SDA than PDA and accounted for 60% of Suillaceae strains on SDA.

  • PDF

Changes of Stream Water Quality and Loads of N and P from the Agricultural Watershed of the Yulmunchon Tributary of the Buk-Han River Basin (북한강 율문천 소유역에서 수질 변화와 농업활동에 의한 N, P 부하량)

  • Jung, Yeong-Sang;Yang, Jae E.;Park, Chol-Soo;Kwon, Young-Gi;Joo, Young-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.170-176
    • /
    • 1998
  • Nitrogen and phosphorus loads from an agricultural watershed of the Yulmun-chon tributary in the Buk-Han River Basin were quantified based on total amounts of water stream flow. The water quality and soil loss were estimated. Levels of the stream were recorded automatically using the water level meter. The flow velocities, along with the cross-sectional areas of the riverbed, were measured to estimate total amounts of water flow at three monitoring sites in this tributary. Water samples were collected at nine sites with two weeks interval from May to August and analyzed for the water quality parameters. Amounts of soil loss were estimated by the USLE. The size of the Yulmunchon watershed was 3,210 ha, of which paddy and upland soil areas were composed about 41%. The total amounts of soil loss from the watershed areas were estimated to be $13,273Mg\;year^{-1}$, showing 53%, 46% and 0.7% of the soil loss ratio from upland, forest, and paddy areas, respectively. Electrical conductivities and Nitrogen concentrations of the stream water were higher in the lower watershed area than in the upper area. Increments of N were higher for $NO_3-N$ than $NH_4-N$. Nitrate nitrogen was the major N form to pollute the water due to the agricultural activity. Total runoff was about 72% of the total precipitation in the watershed. The maximum loads of T-N and T-P due to the runoff were estimated to be 1,500 and $5kg\;day^{-1}$, respectively. Concentrations of $NO_3-N$ and $NH_4-N$ in the runoff were 13.5 and 1.8 times higher than those in precipitation. The N loads were mainly from soil loss, application of fertilizer, and livestock wastes, which were 52% of total N load. Results demonstrated that reduction of fertilizer use and the soil loss would be essential for water quality protection of the agricultural watershed.

  • PDF

Changes in Chemical and Microbiological Properties of Spring Waters in Tongyeoung Area (통영시내 약수의 화학적 및 세균학적 품질변화)

  • 최종덕;김정균
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.4
    • /
    • pp.328-333
    • /
    • 2000
  • This study was carried out to changes in chemical and microbiological properties of spring waters in Tongyeoung area. In this paper, ninety spring water samples were collected from 9 station for 11 month to evaluated chemical and bacteriological water quality. Range and mean values of constituents of the samples are as followed; water temperature 5.2~25.8$^{\circ}C$, 16.3$^{\circ}C$, pH 6.0~7.2, 6.7, total residue 33.6~210 mg/1, 90.6 mg/1, turbidity 0.35~5.48, 1.45NTU, KMnO4 consumed 0.51~4.21 mg/1, 1.39 mg/1, chloride ion 6.23~42.5, 16.7 mg/l, phosphate-phosphorus ND-0.04, 0.02 mg/1, nitrite-nitrogen ND~0.02, 0.01 mg/1, nitrate-nitrogen ND~3.56, 1.42 mg/1, ammonia-nitrogen ND~0.20, 0.14 mg/1, dissolved total nitrogen ND~3.78, 1.57 mg/1, iron 0.04~0.28, 0.13ppm, zinc 0.03~0.66, 0.20ppm, mangan ND~0.01, allumium 0.14~0.58, 0.39ppm, copper ND~0.01, 0.01, lead ND~0.01, 0.01ppm, Arsenic ND~0.01, 0.01ppm, mercury ND~0.02, chrome not detected, cadmium not detetced respectively. The viable cell counts of the spring waters ranged 5.0~760/m1(means 130/m1). Range and mean value of total coliform and focal coliform MPN's of the spring waters were 0~2,400MPN/100 ml, 73MPN/100 ml and 0~540MPN/100 ml, 21MPN/100 ml. Spring water quality was usually poor with viable cell counts exceeding 130 CFU/liter and the coliform counts in spring waters of 73 MPN/liter. Composition of coliform by IMViC reaction was 33.3% E. coli, 15.6% Citrobacter freundii, 35.6% Klebsiella aerogenes and others.

  • PDF