• Title/Summary/Keyword: Nitrate concentration

Search Result 1,009, Processing Time 0.036 seconds

Characteristics of Nitrate Concentration Measured at Gosan: Measurement Data of PM2.5 and TSP between 1998 and 2002 (고산에서 측정한 입자상 질산염 농도 특성: 1998∼2002년 PM2.5와 TSP 측정자료)

  • 김나경;김용표;강창희;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.119-128
    • /
    • 2004
  • The nitrate concentrations in PM$_{2.5}$ and TSP measured at Gosan, Jeju Island, Korea, between March 1998 and February 2002, are discussed. Especially, the characteristics of high nitrate concentration days were analyzed. High nitrate concentration cases in PM$_{2.5}$ were highly correlated with anthropogenic species such as NH$_4$$^{[-10]}$ , and high nitrate concentration cases in TSP were highly correlated with crustal species such as nss-Ca$^{2+}$ and nss -Mg$^{2+}$ Backward trajectory analysis results show the cases of high correlation between nitrate and anthropogenic species occurred when the air parcels moved from China, and the cases of high correlation between nitrate and crustal species occurred when the air parcels moved from Mongolia. Also, high nitrate concentration cases occurred most often in spring (65%) when the air parcels moved from Mongolia and China.ina.

Evaluation of Meymeh Aquifer vulnerability to nitrate pollution by GIS and statistical methods

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Increasing the concentration of nitrate ions in the soil solution and then leaching it to underground aquifers increases the concentration of nitrate in the water, and can cause many health and ecological problems. This study was conducted to evaluate the vulnerability of Meymeh aquifer to nitrate pollution. In this research, sampling of 10 wells was performed according to standard sampling principles and analyzed in the laboratory by spectrophotometric method, then; the nitrate concentration zonation map was drawn by using intermediate models. In the drastic model, the effective parameters for assessing the vulnerability of groundwater aquifers, including the depth of ground water, pure feeding, aquifer environment, soil type, topography slope, non-saturated area and hydraulic conductivity. Which were prepared in the form of seven layers in the ARC GIS software, and by weighting and ranking and integrating these seven layers, the final map of groundwater vulnerability to contamination was prepared. Drastic index estimated for the region between 75-128. For verification of the model, nitrate concentration data in groundwater of the region were used, which showed a relative correlation between the concentration of nitrate and the prepared version of the model. A combination of two vulnerability map and nitrate concentration zonation was provided a qualitative aquifer classification map. According to this map, most of the study areas are within safe and low risk, and only a small portion of the Meymeh Aquifer, which has a nitrate concentration of more than 50 mg / L in groundwater, is classified in a hazardous area.

Effect of Nitrogen Application Levels on Nitrate Concentration in Soil Solution under Plastic Film House

  • Lee, Chang Hoon;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.30-35
    • /
    • 2015
  • This study was conducted to investigate investigated the effect of nitrogen fertilizer on nitrate concentration in soil solution and to determine the relationship between yield and nitrate concentration in soil solution for cucumber cultivation under plastic film house. Nitrogen as urea was applied at rates of 0, 120, 240, 360, and $480kg\;N\;ha^{-1}$ as an additional fertilizer by trickle irrigation during cucumber cultivation. Monitoring of nitrate concentration in soil solution was investigated using porous cups at 25 cm depth under soil surface. Nitrate concentration in soil solution increased with increasing the rate of additional nitrogen. Correlation coefficient between EC value and nitrate concentration was positive in soil and soil solution (p<0.05). An additional nitrogen of about $300kg\;ha^{-1}$ was shown the highest yield of cucumber, and improved yield by 5% compared to N recommendation of $240kg\;N\;ha^{-1}$. The highest yield was determined at nitrate concentration of $82mg\;L^{-1}$ in soil solution by regression equation ($Y=74.2+0.73X+0.000504X^2$, $R^2=0.629^*$). These results means indicate that nitrate concentration in soil solution would be useful method to rapid determination for additional nitrogen during cucumber cultivation under plastic film house.

Autrophic Denitrification of Bank Filtrate Using Elemental Sulfur (황을 이용한 강변여과수의 독립영양탈질)

  • 문희선;남경필;김재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.209-212
    • /
    • 2000
  • As a bench-scale study, transformation of nitrate to nitrogen gas under anoxic condition was determined by using autotrophic denitrifiers containing Thiobacillus denitrificans and elemental sulfur as an electron donor. The research objective is to measure the basic kinetic parameters of autotrophic denitrification reaction on the removal efficiency of nitrate. The results showed that nitrate was almost completely transformed to nitrite in the first 4 days of column operation. After 2 days of accumulation of nitrite, its concentration slowly decreased and the compound was detected less than 0.5 mg/L in 14 days. In the experiment, sulfate concentration in the effluent was the 70~90 mg-S/L and the pH was maintained around pH 7.5. When nitrate concentration of bank filtrate in the real field is considered, this sulfate concentration seems to be acceptable. At 17 cm from the bottom of the column, the effluent showed the highest nitrite concentration, and nitrate concentration decreased rapidly to the Point of 33 cm from the bottom. The results suggest that an appropriate thickness of permeable reactive barriers is about 30 cm.

  • PDF

Effect of Short Term Cold Treatment to Rhizosphere on Nitrate Concentration in Lettuce Plant under Hydroponic Culture System (단기간 근귄 저온처리가 수경재배 상추의 질산태 질소 함량 미치는 영향)

  • Choi, Seung-Ju;Yang, Jin-Chul;Sa, Tong-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.1
    • /
    • pp.69-73
    • /
    • 2002
  • Lettuce (Lactuca sativa L.) plants were grown under hydroponic system to characterize the diurnal change of nitrate concentration and nitrate uptake rate and to examine the effect of short term cold treatment to rhizosphere on nitrate concentration and uptake rate in lettuce plant. The nitrate concentrations in midrib were two times higher than those in leaf. Nitrate concentration in the shoot reached to minimum (8.7 mg-N/GDW) at 14:00 and, thereafter, increased continuously until 23:00. During 11:00$\sim$17:00, nitrate uptake by lettuce plant was maximum (4.8 mg-N/GDW-Root/hr). Short term cold treatment reduced nitrate concentration in the shoot by 14$\sim$18%, and nitrate uptake rate by 50$\sim$55%, respectively. These results showed that short term cold treatment before harvest could be applied for the purpose of reduction of nitrate concentration in the leaf under hydroponic culture.

Autohydrogenotrophic Denitrification of High Nitrate Concentration in a Glass Bead Biofilm Reactor (바이오필름 반응기상에서 수소 이용성 독립영양생물을 이용한 고농도 탈질 반응)

  • Park, Ho Il;Kim, Ji Seong;Kim, Dong Kun;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.236-240
    • /
    • 2004
  • Autohydrogenotrophic denitrification of high nitrate concentration contaminated wastewater in a batch-scale biofilm reactor has been investigated. High nitrate concentration decreased as pH increased from 7.01 to 9.45. The high nitrate concentrations continuously decrease from $150mg.l^{-1}$ to $0mg.l^{-1}$. Nitrite concentrations increase at about two-thirds way through the denitrification process and thereafter it decreases with time. Autohydrogenotrophic denitrification of high nitrate concentration is passible to use drinking water as well as wastewater, and to deal with wastewater treatment by hetrotrophic denitrification.

Accumuation Pattern of Nitrate-Nitrogen in Sorghum And Maize Plants as Affected by Morphological Characteristics And Environmental Temperature (Sorghum 및 옥수수의 형태적 특성과 재배온도가 Nitrate-Nitrogen 축적에 미치는 영향)

  • 김정갑
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.3
    • /
    • pp.146-152
    • /
    • 1987
  • Sorghum cv. Pioneer 93 1, sorghum-sudangrass hybrid cv. Sioux and maize plant cv. Blizzard were assayed for toxic concentrations of nitrate-nitrogen ($NO_3$-N) and their relationship to morphological characteristics and environmental temperature in a field and phytotron trial. In the phytotron, sorghum and maize plants ranging from emergence to heading stage, were grown under different day/night temperatures of 30125, 25/20,28/18 and 1818 degree C. Nitrate-nitrogen in sorghum and maize plants was accumulated mainly in stems. Therefore nitrate concentration in the young plants was increased as development of stalks advanced and was highest at the stage of 3-4 leaves, when the plants had a leaf weight ratio 0.78-0.80 g/g plant weight. However, nitrate concentrations of the plant decreased as morphological development progressed, especially from the stage of growing point differentiation. Correlation coefficients showed a positive correlation of nitrate concentration with leaf weight ratio, leaf area ratio and specific leaf area, while plant height, dry matter percentage and absolute growth rate showed a negative association with TEX>$NO_3$-N ($P{\le}0.1$%). Cyanogenic glycosides, total nitrogen and crude protein were close associated with nitrate accumulation, and positively significant ($P{\le}0.1$%). High temperature over 30/25^{\circ}C.$ for 3 weeks increased N-uptake and dry matter accumulation, but reduced nitrate concentration. Under cold temperature below 18/8^{\circ}C.$ concentration of nitrate-N was increased in spite of its limited nitrogen uptake and plant growth.

  • PDF

Structural Characterization of Silk Fiber Treated with Calcium Nitrate (질산칼슘 처리 농도에 따른 수축견사의 구조특성)

  • 이광길;이용우
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.2
    • /
    • pp.186-196
    • /
    • 1997
  • The IR crystallinity index of Calcium nitrate treated silk fiber decreased proportionally to the concentration of calcium nitrate. A partial change of conformation was observed in the concentration of over 46.4-47.6% changing from $\beta$-sheet or to random coil in the crystalline region. This is in coincidence with the result of crystallinity index, which was started to be reduced in the concentration range of 46.4-47.6%. A same trend was observed for the X-ray order factor, birefringence, degree of orientation and surface structure. These structural parameters were remarkably changed on the treatment of silk fibers with concentration of 46.4-17, 6% calcium nitrate. Therefore, it seems that there exists a critical concentration of calcium nitrate in affection the structure and morphology of silk fibers. According to the examination of surface morphology, the fine stripe was observed in the direction of fiber axis at 46.4% concentration. However, the treated concentration was exceeded by 47.6%, the cracks were appeared severely on the fiber surface in the transverse direction as well as fiber axis direction. This result might be related to the tensile properties, specially a tenacity of silk fibers. As a result of quantitative analysis of a dilute acid hydrolysis, three different regions, which are known as a amorphous, semi-crystalline and crystalline region, could be obtained. The hydrolysis rate curves were different with various concentrations of treatment and the relative contents of each region could be calculated.

  • PDF

A Study on the Cytotoxicity of Lead in Cultured Fibroblasts (납(Pb)이 배양 섬유모세포에 미치는 세포독성에 관한 연구)

  • 정연태;최민규;김정중;문연자;김재민;백순기
    • Environmental Mutagens and Carcinogens
    • /
    • v.15 no.2
    • /
    • pp.122-130
    • /
    • 1995
  • In order to evaluate the cytotoxicity of lead in cultures of Balb/c mouse 3T3 cell line, various cytotoxic assays were carried out after expose cells to various concentrations of lead nitrate. Cytotoxic assays using this study were included NR assay, MTT assay, measurement of LDH and protein, synthetic rate of DNA and UDS. Intrace!!ular Ca$^{2+}$ level was also measured. Light and electron microscopic studies were done for morphological changes of lead-treated cell cultures. The results were as follows; 1. The absorbances of NR and MTT were decreased dose-dependently, and NR, and MTT, values of lead nitrate were 3.4 mM and 1.5 mM, respectively. 2. Amount of LDH released into the medium was increased in dose-dependently and LDH activity at 5 mM concentration of lead nitrate was increased to 335 % of control. 3. Amount of total protein was decreased dose-dependently, and which was half of control at 2 mM concentration of lead nitrate. 4. The synthetic rate of DNA was decreased dose-dependently, and also which was remarkably decreased at 3 mM and 5 mM concentrations of lead nitrate. 5. The synthetic rate of UDS was increased at 1 mM concentration of lead nitrate, but which was remarkably decreased at 3 mM and 5 mM concentrations of lead nitrate. 6. Intrace!lular Ca$^{2+}$ level was remarkably increased at 1 mM concentration of lead nitrate, compared with control. 7. In light microscopy, number of cells and processes were decreased according to the increase of dosage of lead nitrate. Electron microscopic findings showed that many vacuoles and cisternal dilatation of rough endoplasmic reticulum were seen in the cytoplasm at 1 mM concentration of lead nittale. From the above results, high dosage treatment of lead nitrate (>3 mM) damaged genetic malerials and it also showed cytotoxicity in mouse 3T3 cell line cultures by injury of cell organelles and Ca$^{2+}$ channel.

  • PDF

Reduction of nitrate in groundwater by hematite supported bimetallic catalyst

  • Hamid, Shanawar;Lee, Woojin
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • In this study, nitrate reduction of real groundwater sample by 2.2%Cu-1.6%Pd-hematite catalyst was evaluated at different nitrate concentrations, catalyst concentrations, and recycling. Results show that the nitrate reduction is improved by increasing the catalyst concentration. Specific nitrate removal by 2.2%Cu-1.6%Pd-hematite increased linearly with the increase of nitrate concentration showing that the catalyst possesses significantly higher reduction capacity. More than 95% nitrate reduction was observed over five recycles by 2.2%Cu-1.6%Pd-hematite with ~56% nitrogen selectivity in all recycling batches. The results from this study indicate that stable reduction of nitrate in groundwater can be achieved by 2.2%Cu-1.6%Pd-hematite over the wide range of initial nitrate inputs.