• Title/Summary/Keyword: Nitrate Reduction

Search Result 386, Processing Time 0.022 seconds

Effect of Band Spot Fertilization for Reduction of Additional Application in Plastic Film Mulching Cultivation of Onion(Allium cepa L.) (양파 비닐피복 재배에서 추비 절감을 위한 토중시비 효과)

  • Yang, Chang-Hyu;Ryu, Chul-Hyun;Shin, Bok-Woo;Kang, Seung-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.102-108
    • /
    • 2006
  • It is very important to improve fertilizer use efficiency for the saving of fertilizers and for environmental purposes as well. However, there was no effective ways for the fertilization in the mid of growth under the plastic film mulching cultivation so far. For this, a Band Spotty Fertilization (BSF) machine was developed recently. So, we tried to establish a low input fertilization technique using this BSF machine in the vinyl mulching cultivation of onion (Allium cepa L.). Fertilization efficiency, soil properties, and crop yield were examined and compared among treatments from 2000 to 2001. The content of exchangeable K in soils were higher after fertilization but that of available $P_2O_5$ was lower than before the experiment in all plots. The content of nitrate-N was highest at the early growth stage, and higher in BSF plots than that of conventional fertilization (CF). BSF plot showed higher growth rate, and uptake amount of nitrogen of onion by 59-69% than that of CF. N use efficiency in BSF was higher in the order of two time-split application, one time-split application, and three time application. K use efficiency was high 13-17% BSF plots than that in CF($63kg\;ha^{-1}$) plots. The amount of residual N in soils was high by 8-14% in BSF plots compared to that in CF plots, and the loss of N was lowered 26-34% by BSF. Also, the amount of residual K in soils was high by 13-18% and the loss of K was low by 29-31% in BSF plots compared to that in CF plots. The yield of onions increased by 7-13% by BSF due to increased diameter and weight of bulbs. As the results, N fertilization efficiency increased by 22-42% by BSF.

Changes of Nitrogenous Compound According to the Topping Stage and Harvesting Time in Burley Tobacco(Nicotiana tobacum L.) (버어리종 잎담배 순지르기 시기와 수확시기에 따른 질소화합물의 변화)

  • Jang, Soo-Won;Kim, Jae-Hyun;Park, Chang-Jin;Kim, Yoon-Ha;Lee, In-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.146-150
    • /
    • 2011
  • A large amount of nitrogenous compounds are found in burley tobacco and are responsible for peculiar aroma during smoking. Excess in nitrogen or its compounds such as total nitrogen and proteins in burley tobacco gives a strong pungency and make its taste bad. The present study has focused on improving quality of Burley tobacco by regulating topping and harvesting time of leaf to reduce nitrogen compounds in Burley tobacco. In addition, the early-stage of flower topping had lower level of nitrogenous compound, such as total nitrogen and protein nitrogen, and total tobacco-specific nitrosamine (TSNA) contents compared to the button-stage and full flower-stage topping. Also, the contents of nicotine got significantly decreased while the ether extract was increased as the period of topping got delayed. Regarding the brightness among the colors of cured leaves, the color at the full flower-stage topping was the brightest, and there was no particular difference in red and yellow colors. The harvesting amount was decreased as the period of topping got delayed and there was no significant difference between the topping treatments in terms of the exterior quality. As the harvesting time delayed, the total nitrogen, protein nitrogen, nitrate nitrogen, and ammonium nitrogen were decreased while the nicotine contents got increased. Also, the total TSNA contents were decreased as the harvesting time delayed. However, ether extract was increased. Among the colors of cured leaves, the brightness and degree of yellow color were significantly increased as the harvesting time delayed, and there was no particular difference in the degree of red color. The harvesting amount was decreased along with the delayed harvesting time; however, the harvest of the matured and mellow leaves was higher in terms of price, compared to that of the immature leaves. For the reduction of nitrogenous compound and TSNA contents in Burley tobacco, the topping was examined to be more effective in terms of improvement in chemical contents and quality regardless of the decreased harvesting amount.

MICROLEAKAGE OF THE CLASS V CAVITY ACCORDING TO RESTORATION SITE AND CAVITY SIZE USING SEM AND THREE-DIMENSIONAL RECONSTRUCTION TECHNIQUES (SEM과 3차원 재구성법을 이용한 수복면의 위치와 와동 크기에 따른 미세누출도 분석)

  • Yang, In-Seo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.2
    • /
    • pp.112-120
    • /
    • 2005
  • This study was done to evaluate whether there were any differences in microleakage of class V composite restorations according to restoration site and cavity size. Total sixty-four restorations were made in molar teeth using Esthet-X. Small ($2\;{\times}\;2\;{\times}\;1.5\;mm$) and large ($4{\times}2{\times}1.5\;mm$) restorations were made at the buccal/lingual surface and the proximal surface each. After 1,000 times of thermocycling ($5^{\circ}\;-\;55^{\circ}C$), resin replica was made and the percentage of marginal gap to the whole periphery of the restoration was estimated from SEM evaluation. Thermocycled tooth was dye penetrated with $50\%$ silver nitrate solution. After imbedding in an auto-curing resin, it was serially ground with a thickness of 0.25 mm. Volumetric microleakage was estimated after reconstructing three dimensionally. Two-way ANOVA and independent T-test for dye volume, Mann-Whitney U test for the percentage of marginal gap, Spearman's rho test for the relationship between two techniques were used, The results were as follows : 1. The site and size of the restoration affected on the microleakage of restoration. Namely, much more leakage was seen in the proximal and the large restorations rather than the buccal/lingual and the small restorations. 2. Close relationship was found between two techniques (Correlation coefficient = 0.614/ P = 0.000). Within the limits of this study, it was noted that proximal and the large restorations leaked more than buccal/lingual and the small restorations. Therefore, it should be strictly recommended large exposure of margins should be avoided by reducing unnecessary tooth reduction.

Comparison of nutrient removal efficiency of an infiltration planter and an infiltration trench (침투도랑(IT)과 침투화분(IP)의 영양염류 저감효율 비교분석)

  • Yano, K.A.V.;Geronimo, F.K.F.;Reyes, N.J.D.G.;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.384-391
    • /
    • 2019
  • Nutrients in stormwater runoff have raised concerns regarding water quality degradation in the recent years. Low impact development (LID) technologies are types of nature-based solutions developed to address water quality problems and restore the predevelopment hydrology of a catchment area. Two LID facilities, infiltration trench (IT) and infiltration planter (IP), are known for their high removal rate of nutrients through sedimentation and vegetation. Long-term monitoring was conducted to assess the performance and cite the advantages and disadvantages of utilizing the facilities in nutrient removal. Since a strong ionic bond exists between phosphorus compounds and sediments, reduction of total phosphorus (TP) (more than 76%), in both facilities was associated to the removal of total suspended solids (TSS) (more than 84%). The efficiency of nitrogen in IP is 28% higher than IT. Effective nitrification occurred in IT and particulate forms of nitrogen were removed through sedimentation and media filters. Decrease in ammonium- nitrogen (NH4-N) and nitrite-nitrogen (NO2-N), and increase in nitrate-nitrogen (NO3-N) fraction forms indicated that effective nitrification and denitrification occurred in IP. Hydrologic factors such as rainfall depth and rainfall intensity affected nutrient treatment capabilities of urban stormwater LID facilities The greatest monitored rainfall intensity of 11 mm/hr for IT yielded to 34% and 55% removal efficiencies for TN and TP, respectively, whereas, low rainfall intensities below 5 mm resulted to 100 % removal efficiency. The greatest monitored rainfall intensity for IP was 27 mm/hr, which still resulted to high removal efficiencies of 98% and 97% for TN and TP, respectively. Water quality assessment showed that both facilities were effective in reducing the amount of nutrients; however, IP was found to be more efficient than IT due to its additional provisions for plant uptake and larger storage volume.

Application of Reduce Tillage with a Strip Tiller and its Effect on Soil Erosion Reduction in Chinese Cabbage Cultivation (배추 재배에 있어 경운방법에 따른 작업효율성 및 토양유실 특성 평가)

  • Lee, Jeong-Tae;Lee, Gye-Jun;Ryu, Jong-Soo;Hwang, Seon-Woong;Park, Suk-Hoo;Zhang, Yong-Seon;Jeong, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.970-976
    • /
    • 2011
  • Strip tiller equipment was developed to reduce soil erosion in the slope land for highland agricultural area. The equipment consisted of 4 rows strip tillage device and fertilizer applicator. The field was tilled in 10 cm width and in 10 cm depth by the equipment, of which tilled surface was 16.7% of full-width tillage. The working time and fuel consumption of the equipment were $3.8hours\;ha^{-1}$ and $24.4L\;ha^{-1}$ respectively, which were 59% and 74% less than those of the conventional tillage. Fertilizer efficiency of the equipment in cultivation of Chinese cabbage was 1.7, 1.6 and 1.5 times higher in nitrate, phosphorous and potassium respectively, than conventional tillage. When the equipment was used after covering of rye residue, the quantity of runoff was 49~67% lower than the conventional tillage. And the quantity of soil loss were 1.3 and $0.2Mg\;ha^{-1}$ at right after and 30 days after planting of Chinese cabbage respectively, while 11.5 and $4.1Mg\;ha^{-1}$ in conventional tillage. In conclusion, the strip tillage equipment developed in this study can be applicable to slope land, so that soil loss of 90% can be reduced.

Analysis of the Long-Range Transport Contribution to PM10 in Korea Based on the Variations of Anthropogenic Emissions in East Asia using WRF-Chem (WRF-Chem 모델을 활용한 동아시아의 인위적 배출량 변동에 따른 한국 미세 먼지 장거리 수송 기여도 분석)

  • Lee, Hyae-Jin;Cho, Jae-Hee
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.283-302
    • /
    • 2022
  • Despite the nationwide COVID-19 lockdown in China since January 23, 2020, haze days with high PM10 levels of 88-98 ㎍ m-3 occurred on February 1 and 2, 2020. During these haze days, the East Asian region was affected by a warm and stagnant air mass with positive air temperature anomalies and negative zonal wind anomalies at 850 hPa. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to analyze the variation of regional PM10 aerosol transport in Korea due to decreased anthropogenic emissions in East Asia. The base experiment (BASE), which applies the basic anthropogenic emissions in the WRF-Chem model, and the control experiment (CTL) applied by reducing the anthropogenic emission to 50%, were used to assess uncertainty with ground-based PM10 measurements in Korea. The index of agreement (IOA) for the CTL simulation was 0.71, which was higher than that of BASE (0.67). A statistical analysis of the results suggests that anthropogenic emissions were reduced during the COVID-19 lockdown period in China. Furthermore, BASE and CTL applied to zero-out anthropogenic emissions outside Korea (BASE_ZEOK and CTL_ZEOK) were used to analyze the variations of regional PM10 aerosol transport in Korea. Regional PM10 transport in CTL was reduced by only 10-20% compared to BASE. Synthetic weather variables may be another reason for the non-linear response to changes in the contribution of regional transport to PM10 in Korea with the reduction of anthropogenic emissions in East Asia. Although the regional transport contribution of other inorganic aerosols was high in CTL (80-90%), sulfate-nitrate-ammonium (SNA) aerosols showed lower contributions of 0-20%, 30-60%, and 30-60%, respectively. The SNA secondary aerosols, particularly nitrates, presumably declined as the Chinese lockdown induced traffic.