• Title/Summary/Keyword: Nitinol wire

Search Result 17, Processing Time 0.027 seconds

Robust Control of Vibration Using shape memory alloy actuator (형상기억합금 액추에이터를 이용한 강건한 진동제어)

  • ;Koval, L. R.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.263-270
    • /
    • 1995
  • The use of the shape memory alloy, Nitinol wire, is investigated as an actuator for enhancing the damping in structural vibration systems. The first-order mathematical model of the Nitinol wire is obtained from the experimental data for an actuator. Finite element method is utilized for the strain gage sensor model, which is installed at the root of cantilever beam. A simple system, cantilever beam, is built as a flexible structural system to implement a control law with the Nitinol wire actuator. The system model including sensor and actuator is derived, which agrees with the experimental results. The actuator dynamics is augmented with the system so as to design PI controller and the one of robust controllers, LQG/LTR controller, and the control laws are implemented experimentally. The experimental study shows the feasibility of utilizing the Nitinol wire as an actuator for the purpose of vibration control.

METAL RELEASE FROM BRACKETS AND ARCHWIRES (BRACKET과 호선의 금속유리)

  • Park, Soo Byung;Rhee, Byung Tae
    • The korean journal of orthodontics
    • /
    • v.19 no.2
    • /
    • pp.75-84
    • /
    • 1989
  • The purpose of this experiment was to measure the amounts of nickel and chromium released from a simulated orthodontic appliance in artificial saliva. Simulated mandibular half-arch orthodontic appliances were composed of American Iron and Steel Institute type 304 brackets, Permachrome, Elgiloy, Australian wire, T.M.A. and Nitinol. The amounts of nickel and chromium released from sample were measured with atomic absorption spectrophotometer after 3, 6, 9, 12, 15 days. The cumulative amounts of nickel released from Permachrome, Elgiloy, Australian wire and T.M.A. reached a plateau after 6 days. But the cumulative amounts of nickel released from Nitinol increased continuously. Significant amounts of both nickel and chromium were solubilized from the simulated orthodontic appliances into artificial saliva. After 15 days, total cumulative amounts of nickel were $152.15{\mu}g$, $150.27{\mu}g$, $134.74{\mu}g$, $114.67{\mu}g$ and $93.39{\mu}$ from the Elgiloy, Australian wire, Nitinol, Permachrome and T.M.A., respectively. Total cumulative amounts of chromium from Permachrome, Australian wire, Elgiloy, Nitinol and T.M.A. were $100.83{\mu}g$, $83.64{\mu}g$, $81.61{\mu}g$, $14.90{\mu}g$ and $12.43{\mu}g$, respectively. The result showed that nickel released from Elgiloy and chromium released from Permachrome were more than any others.

  • PDF

Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators

  • Song, Gangbing;Ma, Ning;Li, Luyu;Penney, Nick;Barr, Todd;Lee, Ho-Jun;Arnold, Steve
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • It has been shown in the literature that active adjustment of the intake area of a jet engine has potential to improve its fuel efficiency. This paper presents the design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators. The Nitinol SMA material is used in this research due to its advantages of high power-to-weight ratio and electrical resistive actuation. The Nitinol SMA material can be fabricated into a variety of shapes, such as strips, foils, rods and wires. In this paper, SMA wires are used due to its ability to generate a large strain: up to 6% for repeated operations. The proposed proof-of-concept engine intake employs overlapping leaves in a concentric configuration. Each leaf is mounted on a supporting bar than can rotate. The supporting bars are actuated by an SMA wire actuator in a ring configuration. Electrical resistive heating is used to actuate the SMA wire actuator and rotate the supporting bars. To enable feedback control, a laser range sensor is used to detect the movement of a leaf and therefore the radius of the intake area. Due to the hysteresis, an inherent nonlinear phenomenon associated with SMAs, a nonlinear robust controller is used to control the SMA actuators. The control design uses the sliding-mode approach and can compensate the nonlinearities associated with the SMA actuator. A proof-of-concept model is fabricated and its feedback control experiments show that the intake area can be precisely controlled using the SMA wire actuator and has the ability to reduce the area up to 25%. The experiments demonstrate the feasibility of engine intake area control using an SMA wire actuator under the proposed design.

A STUDY ON THE TORQUE EFFECT OF ORTHODONTIC WIRES (교정용 선재의 TORQUE 효과에 관한 연구)

  • Lim, Jeong-Hyeon;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.87-94
    • /
    • 1994
  • The purpose of this study was to evaluate the torque effect of othodontic wires. Ten types of orthodontic wires (five types of materials, two types of cross-sectional dimensions) were selected. Each group of ire type was constituted with five specimens. These specimens were tested on the universal testing machine(Instron) with specially-designed jig. The torque-twist curve of each wire was obtained and the results were analyzed statistically. The results were as follows. 1. 0.017'$\times$ 0.025' wire showed more torque effect than 0.016'$\times$ 0.022' wire at the same twist. 2.Torque effect was the greatest in stainless steel and the least in Nitinol. 3.The maximum amount of torque was the greatest in heat-treated Blue Elgiloy and the least in Nitinol.

  • PDF

Phase Transformation Characteristic of Nitinol Shape Memory Alloy with Annealing Treatment Conditions (어닐링 열처리 조건에 따른 NITINOL 형상기억합금의 상변환 특성 연구)

  • 여동진;윤성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.426-429
    • /
    • 2003
  • In this study, phase transformation characteristics of Nitinol shape memory alloy with 54.5wt%Ni-45.5wt%Ti were investigated by varying with annealing treatment and cutting conditions through DSC(differential scanning calorimetry). Annealing treatment conditions were considered as heat treated time of 5 min, 15 min, 30 min, and 45 min, heat treated temperature of 40$0^{\circ}C$, 50$0^{\circ}C$, 5$25^{\circ}C$, 55$0^{\circ}C$, 575$^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$, 80$0^{\circ}C$, and 90$0^{\circ}C$, and environmental condition of heat treatment under vacuum or air. Cutting conditions were considered as no cutting, one side cutting, and two side cutting. Tensile test was also conducted on Nitinol shape memory alloy to investigate thermomechanical characteristics by varying with annealing heat treatment histories. According to the results, annealing treatment and cutting conditions were found to significantly affect on phase transformation and thermomechanical characteristics of Nitinol shape memory alloy.

  • PDF

Application of Ultrasonic Nano Crystal Surface Modification into Nitinol Stent Wire to Improve Mechanical Characteristics (나이티놀 스텐트 와이어의 기계적 특성 향상을 위한 초음파 나노표면 개질 처리에 대한 연구)

  • Kim, Sang-Ho;Suh, Tae-Suk;Lee, Chang-Soon;Park, In-Gyu;Cho, In-Sik;Pyoun, Young-Shik;Kim, Seong-Hyeon
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.80-87
    • /
    • 2009
  • Phase transformation, superelastic characteristics and variation of surface residual stress were studied for Nitinol shape memory alloy through application of UNSM technology, and life extension methods of stent were also studied by using elastic resilience and corrosion resistance. Nitinol wire of ${\phi}1.778$ mm showed similar surface roughness before and after UNSM treatment, but drawing traces and micro defects were all removed by UNSM treatment. It also changed the surface residual stress from tensile to compressive values, and XRD result showed less intensive austenite peak and clear martensite and additional R-phase peaks after UNSM treatment. Fatigue resistance could be greatly improved through removal of surface defects and rearrangement of surface residual stress from tensile to compressive state, and development of surface modification system to improve not only bio-compatability but also resistance to corrosion and wear will make it possible to develop vascular stent which can be used for circulating system diseases which run first cause of death of recent Koreans.

  • PDF

Vibration control of small horizontal axis wind turbine blade with shape memory alloy

  • Mouleeswaran, Senthil Kumar;Mani, Yuvaraja;Keerthivasan, P.;Veeraragu, Jagadeesh
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.257-262
    • /
    • 2018
  • Vibrational problems in the domestic Small Horizontal Axis Wind Turbines (SHAWT) are due to flap wise vibrations caused by varying wind velocities acting perpendicular to its blade surface. It has been reported that monitoring the structural health of the turbine blades requires special attention as they are key elements of a wind power generation, and account for 15-20% of the total turbine cost. If this vibration problem is taken care, the SHAWT can be made as commercial success. In this work, Shape Memory Alloy (SMA) wires made of Nitinol (Ni-Ti) alloys are embedded into the Glass Fibre Reinforced Polymer (GFRP) wind turbine blade in order to reduce the flapwise vibrations. Experimental study of Nitinol (Ni-Ti) wire characteristics has been done and relationship between different parameters like current, displacement, time and temperature has been established. When the wind turbine blades are subjected to varying wind velocity, flapwise vibration occurs which has to be controlled continuously, otherwise the blade will be damaged due to the resonance. Therefore, in order to control these flapwise vibrations actively, a non-linear current controller unit was developed and fabricated, which provides actuation force required for active vibration control in smart blade. Experimental analysis was performed on conventional GFRP and smart blade, depicted a 20% increase in natural frequency and 20% reduction in amplitude of vibration. With addition of active vibration control unit, the smart blade showed 61% reduction in amplitude of vibration.

A study on the Design of Bidirectional Actuator using NITINOL (NITINOL을 이용한 차동식 액츄에이터의 설계에 관한 연구)

  • 정상화;김현욱;신형성;차경래;신병수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.670-674
    • /
    • 2002
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidirectional actuator was fabricated and experimented for its performance.

  • PDF

A study on the Improvement of the Performance of Biodirectional NITINOL Actuator (NITINOL을 이용한 차동식 액츄에이터의 동작성능 향상을 위한 연구)

  • Jung, Sang-Hwa;Kim, Hyun-Wook;Cha, Kyung-Rae;Song, Seok;Shin, Byung-Soo;Lee, Kyung-Hyung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1577-1580
    • /
    • 2003
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidirectional actuator was fabricated and experimented for its performance.

  • PDF