• Title/Summary/Keyword: Nintedanib

Search Result 5, Processing Time 0.02 seconds

Current Diagnosis and Management of Hypersensitivity Pneumonitis

  • Leone, Paolo Maria;Richeldi, Luca
    • Tuberculosis and Respiratory Diseases
    • /
    • v.83 no.2
    • /
    • pp.122-131
    • /
    • 2020
  • Hypersensitivity Pneumonitis (HP) one of the most common interstitial lung diseases (ILDs) is characterized by exposure to an inhaled inciting antigen that leads to a host immunologic reaction determining interstitial inflammation and architectural distortion. The underlying pathogenetic mechanisms are unclear. The absence of international shared diagnostic guidelines and the lack of a "gold-standard" test for HP combined with the presence of several clinical and radiologic overlapping features makes it particularly challenging to differentiate HP from other ILDs, also in expert contests. Radiology is playing a more crucial role in this process; recently the headcheese sign was recognized as a more specific for chronic-HP than the extensive mosaic attenuation. Several classification proposals and diagnostic models have been advanced by different groups, with no prospective validation. Therapeutic options for HP have been limited to antigen avoidance and immunosuppressant drugs over the last decades. Several questions about this condition remain unanswered and there is a need for more studies.

Searching for Novel Candidate Small Molecules for Ameliorating Idiopathic Pulmonary Fibrosis: a Narrative Review

  • Kyung-il Kim;Rajib Hossain;Xin Li;Hyun Jae Lee;Choong Jae Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.484-495
    • /
    • 2023
  • Idiopathic pulmonary fibrosis (IPF) can be defined as a progressive chronic pulmonary disease showing scarring in the lung parenchyma, thereby resulting in increase in mortality and decrease in the quality of life. The pathophysiologic mechanism of fibrosis in IPF is still unclear. Repetitive microinjuries to alveolar epithelium with genetical predisposition and an abnormal restorative reaction accompanied by excessive deposition of collagens are involved in the pathogenesis. Although the two FDA-approved drugs, pirfenidone and nintedanib, are under use for retarding the decline in lung function of patients suffered from IPF, they are not able to improve the survival rate or quality of life. Therefore, a novel therapeutic agent acting on the major steps of the pathogenesis of disease and/or, at least, managing the clinical symptoms of IPF should be developed for the effective regulation of this incurable disease. In the present review, we tried to find a potential of managing the clinical symptoms of IPF by natural products derived from medicinal plants used for controlling the pulmonary inflammatory diseases in traditional Asian medicine. A multitude of natural products have been reported to exert an antifibrotic effect in vitro and in vivo through acting on the epithelial-mesenchymal transition pathway, transforming growth factor (TGF)- β-induced intracellular signaling, and the deposition of extracellular matrix. However, clinical antifibrotic efficacy of these natural products on IPF have not been elucidated yet. Thus, those effects should be proven by further examinations including the randomized clinical trials, in order to develop the ideal and optimal candidate for the therapeutics of IPF.

Progressive Pulmonary Fibrosis: Where Are We Now?

  • Hyung Koo Kang;Jin Woo Song
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • Interstitial lung diseases (ILDs) are a diverse collection of lung disorders sharing similar features, such as inflammation and fibrosis. The diagnosis and management of ILD require a multidisciplinary approach using clinical, radiological, and pathological evaluation. Progressive pulmonary fibrosis (PPF) is a distinct form of progressive and fibrotic disease, occurring in ILD cases other than in idiopathic pulmonary fibrosis (IPF). It is defined based on clinical symptoms, lung function, and chest imaging, regardless of the underlying condition. The progression to PPF must be monitored through a combination of pulmonary function tests (forced vital capacity [FVC] and diffusing capacity of the lung for carbon monoxide), an assessment of symptoms, and computed tomography scans, with regular follow-up. Although the precise mechanisms of PPF remain unclear, there is evidence of shared pathogenetic mechanisms with IPF, contributing to similar disease behavior and worse prognosis compared to non-PPF ILD. Pharmacological treatment of PPF includes immunomodulatory agents to reduce inflammation and the use of antifibrotics to target progressive fibrosis. Nintedanib, a known antifibrotic agent, was found to be effective in slowing IPF progression and reducing the annual rate of decline in FVC among patients with PPF compared to placebos. Nonpharmacological treatment, including pulmonary rehabilitation, supplemental oxygen therapy, and vaccination, also play important roles in the management of PPF, leading to comprehensive care for patients with ILD. Although there is currently no cure for PPF, there are treatments that can help slow the progression of the disease and improve quality of life.

Suppressors for Human Epidermal Growth Factor Receptor 2/4 (HER2/4): A New Family of Anti-Toxoplasmic Agents in ARPE-19 Cells

  • Kim, Yeong Hoon;Bhatt, Lokraj;Ahn, Hye-Jin;Yang, Zhaoshou;Lee, Won-Kyu;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.5
    • /
    • pp.491-503
    • /
    • 2017
  • The effects of tyrosine kinase inhibitors (TKIs) were evaluated on growth inhibition of intracellular Toxoplasma gondii in host ARPE-19 cells. The number of tachyzoites per parasitophorous vacuolar membrane (PVM) was counted after treatment with TKIs. T. gondii protein expression was assessed by western blot. Immunofluorescence assay was performed using Programmed Cell Death 4 (PDCD4) and T. gondii GRA3 antibodies. The TKIs were divided into 3 groups; non-epidermal growth factor receptor (non-EGFR), anti-human EGFR 2 (anti-HER2), and anti-HER2/4 TKIs, respectively. Group I TKIs (nintedanib, AZD9291, and sunitinib) were unable to inhibit proliferation without destroying host cells. Group II TKIs (lapatinib, gefitinib, erlotinib, and AG1478) inhibited proliferation up to 98% equivalent to control pyrimethamine ($5{\mu}M$) at $20{\mu}M$ and higher, without affecting host cells. Group III TKIs (neratinib, dacomitinib, afatinib, and pelitinib) inhibited proliferation up to 98% equivalent to pyrimethamine at $1-5{\mu}M$, but host cells were destroyed at $10-20{\mu}M$. In Group I, TgHSP90 and SAG1 inhibitions were weak, and GRA3 expression was moderately inhibited. In Group II, TgHSP90 and SAG1 expressions seemed to be slightly enhanced, while GRA3 showed none to mild inhibition; however, AG1478 inhibited all proteins moderately. Protein expression was blocked in Group III, comparable to pyrimethamine. PDCD4 and GRA3 were well localized inside the nuclei in Group I, mildly disrupted in Group II, and were completely disrupted in Group III. This study suggests the possibility of a vital T. gondii TK having potential HER2/4 properties, thus anti-HER2/4 TKIs may inhibit intracellular parasite proliferation with minimal adverse effects on host cells.

Promising Therapeutic Effects of Embryonic Stem Cells-Origin Mesenchymal Stem Cells in Experimental Pulmonary Fibrosis Models: Immunomodulatory and Anti-Apoptotic Mechanisms

  • Hanna Lee;Ok-Yi Jeong;Hee Jin Park;Sung-Lim Lee;Eun-yeong Bok;Mingyo Kim;Young Sun Suh;Yun-Hong Cheon;Hyun-Ok Kim;Suhee Kim;Sung Hak Chun;Jung Min Park;Young Jin Lee;Sang-Il Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.45.1-45.22
    • /
    • 2023
  • Interstitial lung disease (ILD) involves persistent inflammation and fibrosis, leading to respiratory failure and even death. Adult tissue-derived mesenchymal stem cells (MSCs) show potential in ILD therapeutics but obtaining an adequate quantity of cells for drug application is difficult. Daewoong Pharmaceutical's MSCs (DW-MSCs) derived from embryonic stem cells sustain a high proliferative capacity following long-term culture and expansion. The aim of this study was to investigate the therapeutic potential of DW-MSCs in experimental mouse models of ILD. DW-MSCs were expanded up to 12 passages for in vivo application in bleomycin-induced pulmonary fibrosis and collagen-induced connective tissue disease-ILD mouse models. We assessed lung inflammation and fibrosis, lung tissue immune cells, fibrosis-related gene/protein expression, apoptosis and mitochondrial function of alveolar epithelial cells, and mitochondrial transfer ability. Intravenous administration of DWMSCs consistently improved lung fibrosis and reduced inflammatory and fibrotic markers expression in both models across various disease stages. The therapeutic effect of DW-MSCs was comparable to that following daily oral administration of nintedanib or pirfenidone. Mechanistically, DW-MSCs exhibited immunomodulatory effects by reducing the number of B cells during the early phase and increasing the ratio of Tregs to Th17 cells during the late phase of bleomycin-induced pulmonary fibrosis. Furthermore, DW-MSCs exhibited anti-apoptotic effects, increased cell viability, and improved mitochondrial respiration in alveolar epithelial cells by transferring their mitochondria to alveolar epithelial cells. Our findings indicate the strong potential of DW-MSCs in the treatment of ILD owing to their high efficacy and immunomodulatory and anti-apoptotic effects.