• Title/Summary/Keyword: Night-soil

Search Result 162, Processing Time 0.018 seconds

An Initiative Study on Relationship between Algal Blooms and Asian Dust for Regulation of Algal Blooms (조류 성장 억제를 위한 녹조 및 적조 발생과 황사의 상관관계 초기적 연구)

  • Kim, Tai-Jin;Jeong, Jaechil;Seo, Rabeol;Kim, Hyung Moh;Kim, Dae Geun;Chun, Youngsin;Park, Soon-Ung;Yi, Sehyoon;Park, Jun Jo;Lee, Jin Ha;Lee, Jay J.;Lee, Eun Ju
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • Although the problems of the algal blooms have been world-widely observed in freshwater, estuary, and marine throughout the year, it is not yet certain what are the basic causes of such blooms. Consequently, it is very difficult to predict when and where algal blooms occur. The constituents of the Asian dust are in a good agreement with the elements required for the algal growth, which suggests some possible relationship between the algal blooms and the Asian dust. There have been frequently algal blooms in drinking water from rivers or lakes. However, there is no any algal blooms in upwelling waters where the Asian dust cannot penetrate into the soil due to its relatively weak settling velocity (size of particles, $4.5{\pm}1.5{\mu}m$), which implies the possible close relationship of the Asian dust with algal blooms. The present initiative study is thus intended firstly in Korea to illustrate such a relationship by reviewing typical previous studies along with 12 years of weekly iron profiles (2001~2012) and two slant culture experiments with the dissolved Asian dust. The result showed bacterial suspected colonies in the slant culture experiment that are qualitatively in a good agreement with the recent Japanese studies. Since the diatoms require cheap energy (8%) compared to other phytoplankton (100%) to synthesize their cell walls by silicate, the present results can be used to predict algal blooms by diatoms if the concentrations of iron and silicate are available during spring and fall. It can be postulated that the algal blooms occur only if the environmental factors such as light, nutrients, calm water surface layer, temperature, and pH are simultaneously satisfied with the requirements of the micronutrients of mineral ions supplied by the Asian dust as enzymatic cofactors for the rapid bio-synthesis of the macromolecules during algal blooms. Simple eco-friendly methods to regulate the algal blooms are suggested for the initial stage of blooming with limited area: 1) to cover up the water surface with black curtain and inhibit photosynthesis during the day time, 2) to blow air (20.9%) or pure oxygen into the bottom of the water and inhibit rubisco for carbon uptake and nitrate reductase for nitrogen uptake activities in algal growth during the night, 3) to eliminate the resting spores or cysts by suction of bottom sediments as deep as 5 cm to prevent the next year germinations.

Characteristics and pedigree selection of a shortened cultivation period strain in Lepista nuda (재배기간이 짧은 민자주방망이버섯 우량계통 선발 및 특성)

  • Jeon, Jong-Ock;Lee, Kwan-Woo;Lee, Kyoung-Jun;Kim, Min-Ja;Kim, In-Jae;Kim, Young-Ho
    • Journal of Mushroom
    • /
    • v.18 no.4
    • /
    • pp.331-338
    • /
    • 2020
  • This study was conducted to cultivate new Lepista nuda varieties with shorter cultivation period and better fruiting body compared to that of wild strains, for mass production and commercial application. Eighteen genetic resources of L. nuda were collected and grown in boxes using rice straw-fermented growth medium. Four lines with fruiting bodies were formed and selected as cross-breeding lines. Although 657 combinations were crossed through monospore crossing, only 17 combinations were bred between the 'CBMLN-19' line and the 'CBMLN-30' line. Among them, 8 lines with fast mycelial growth and high density were selected. After inoculating the rice straw-fermented growth medium with 14 genetic resources and 8 cross-breeding lines, their incubation period was investigated. Six of the cross-breeding lines completed their incubation in 20 days, while 7 of the 14 genetic resources took more than 40 days to complete their incubation, reducing the incubation period by more than 20 days in most cross-breeding lines. After the incubations were completed, the clay loam soil was covered with for post-cultivation, and when the mycelial cultivation was complete, the formation of fruiting bodies was induced after scraping the mycelial bodies under these environmental conditions: 14℃, 95% relative humidity or higher, and 1,500 to 2,000 ppm CO2 concentration. The temperature was reduced to 6℃ at night, resulting in a low temperature shock. Thus, 4 lines of fruiting bodies occurred from two genetic resources 'CBMLN-31' and 'CBMLN-44' and two cross-bred lines 'CBMLN-96' and 'CBMLN-103'. After inoculation, the longest period for fruiting bodies to occur was 100 days for the control:, the genetic resource 'CBMLN-31', and the shortest period (45 days) was observed for the cross-breeding line 'CBMLN-103'. The result of the investigation of the fruiting body characteristics shows that the cross-bred line 'CBMLN-103' showed a small form with 1.9 g of individual weight and 123validstipes per box, which was the highest incidence among the four lines. Another cross-bred line, 'CBMLN-96', had an individual weight of 5.5 g, which is larger than that of 'CBMLN-103'; however, the number of valid stipes per box was 30 less than that of 'CBMLN-103'. Quantity analysis showed that the control, 'CBMLN-31', had the highest quantity of 783 g per box, followed by the cross-bred line, 'CBMLN-96' with 165 g per box, and then the 'CBMLN-103' with 232 g. The quantity of the two crossbred lines was lower than that of the control 'CBMLN-31'; however, the amount of fruiting bodies was higher, and the cultivation period was shortened by 32 to 33 days. Therefore, these two lines would be selected as superior lines.