• Title/Summary/Keyword: Night Alternating Temperature

Search Result 4, Processing Time 0.017 seconds

Effects of Night Alternating Temperature on Growth and Cold Stress at Nursing Stage in Tomato (토마토 육묘 시 변온이 생육과 저온 스트레스에 미치는 영향)

  • Kim, D.E.;Lee, W.Y.;Bae, K.S.;Shin, Y.A.;Kang, J.K.;Woo, Y.H.;Kang, D.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.2
    • /
    • pp.39-47
    • /
    • 2018
  • This study was carried out to investigate the applicability of alternating temperature control during night time in a nursery seedling production. Three groups of samples were exposed to three different environmental conditions for 6 days from 18:00 to 09:00; one was constantly 15 ℃, another was alternating between 15 ℃ for 2 hours and 11 ℃ for 2 hours, and the other was alternating between 15 ℃ for 2 hours and 11 ℃ for 4 hours. Leaf temperature and stem temperature was measured in real time. The influence of cold stress was analyzed by flavonoid content and growth of tomato seedling. The temperature of leaves and stem became equal to the ambient temperature over time, furthermore, there was no significant difference among the treatments. In conclusion, it is considered that heating costs can be saved considerably, as the alternating temperature has fewer effects on cold stress reaction by tomato seedling growth.

Factors Affecting Sporulation of a Mycoherbicide, Epicoccosorus nematosporus, on the Lesion of Eleocharis kuroguwai

  • Hong, Yeon-Kyu;Hyun, Jong-Nae;Cho, Jae-Min;Uhm, Jae-Youl;Kim, Soon-Chul
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.81-84
    • /
    • 2002
  • Effects of temperature and dew period on sporulation of a mycoherbicide, Epicoccosorus nematosporus, on the lesion of its host, Eleocharis kuroguwai were determined. Conidia formation was first observed after 10 days on plants incubated for either 12 or 16 h in a dew chamber at 28$^{\circ}C$; 16 h dew period resulted in more conidia formation. As the dew period was decreased to less than 8 h, fewer conidia formed. Conidial production was most abundant at 28$^{\circ}C$ and produced as much as 3.3$\times$10$^4$conidia per lesion, while 0.1$\times$10$^3$and 2.3$\times$10$^3$conidia per lesion were produced at 16$^{\circ}C$ and 36$^{\circ}C$, respectively. Alternating temperature regimes, i.e., 30/15, 30/20, 28/20, and 28/15$^{\circ}C$ (day/night) were much better than constant temperature, i.e., 30/30, 28/28/, and 20/2$0^{\circ}C$ for sporulation. In the second sporulation, there were as much as 3.1$\times$10$^4$conidia per lesion (ca. <50% of the first sporulation). Then, sporulation dropped sharply to 6.2$\times$10$^2$conidia per lesion in the third sporulation. Results of this study suggest that temperature combined with dew period is the primary limiting factor in the use of E. nematosporus as a mycoherbicide off, kuroguwai.

Air Temperature Profile within a Partially Developed Paddy Rice Canopy (생육중기 벼 군락 내 기온의 연직구조)

  • Yoon Young-Kwan;Yun Jin-Il;Kim Kyu-Rang;Park Eun-Woo;Hwan Heon;Cho Seong-In
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.204-208
    • /
    • 2000
  • Little information is available for the temporal variation in air temperature profile within rice canopies under development, while much works have been done for a fully developed canopy. Fine wire thermocouples of 0.003 mm diameter (chromel-constantan) were installed at 10 vertical heights by a 10 cm step in a paddy rice field to monitor the air temperatures over and within the developing rice canopy from one month after transplanting (June 29) to just before heading (August 24). According to a preliminary analysis of the data, we found neither the daytime temperature maximum nor the night time minimum at the active radiation surface (the canopy height with maximum leafages) during this period, which is a typical profile of a fully developed canopy. Air temperature within the canopy never exceeded that above the canopy at 1.5 m height during the daytime. Temporal march of the within-canopy profile seemed to be controlled mainly by the ambient temperature above the canopy and the water temperature beneath the canopy, and to some extent by the solar altitude, resulting in alternating isothermal and inversion structures.

  • PDF

Effect of Temperatures during Ripening Period on Morpological Characteristics of Rachis-Grain in Rice (등숙기간중 온도와 벼 이삭 지경간 곡립의 형태 형성차이)

  • Lee, Jeong-Il;Shin, Jin-Chul;Kim, Je-Kyu;Kim, E-Hun;Cho, Dong-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.5
    • /
    • pp.662-669
    • /
    • 1995
  • To clarify the effect of temperature during ripening on grain quality, rice plant which was grown under normal natural conditions untill heading stage was subjected various temperature regimes during grain filling stage. Three varieties, Odaebyeo, Hwaseongbyeo and Dongjinbyeo were used. Grains on primary and secondary-rachis branches were harvested seperately and measured specific gravity, grain size and weight. The optimum daily temperature for grain filling of rice during ripening period was about 22$^{\circ}C$ and grain filling under alternating temperature(26/18$^{\circ}C$, day /night) was better than constant temperature (22 /22$^{\circ}C$) based on 1, 000-grain weight and yield. Grain size based on volume per grain was smallest under the constant temperature of 22 /22$^{\circ}C$. The size of secondary-rachis branches was smaller than primary-rachis branch. The difference in size between primary and secondary-rachis branches was biggest in Hwaseongbyeo, followed by Odaebyeo and Dongjinbyeo. The temperature regimes treated did not influence the grain size difference between branches so much. The 1000-grain weight was lighter under high temperature than low temperature in Odaebyeo, but reversed tendency was observed in Dongjinbyeo of secondary rachis-branches.

  • PDF