• Title/Summary/Keyword: Nielsen arch

Search Result 5, Processing Time 0.016 seconds

Validity of the Nielsen-type hanger arrangement in spatial arch bridges with straight decks

  • Mirian Canovas-Gonzalez;Juan M. Garcia-Guerrero;Juan J. Jorquera-Lucerga
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.51-69
    • /
    • 2023
  • In tied-arch bridges, a properly designed connection between the arch and the deck may become crucial, since the forces in the structure may be significantly reduced. This implies substantial material savings and, consequently, cheaper constructions. The introduction of the Nielsen cable arrangement (composed of V-shaped inclined hangers) in the last century was a milestone because it was able to reduce deflections and bending moments both in the arch and in the deck. So far, the Nielsen cable arrangement has proven to be successful in traditional vertical arch bridges. However, despite its advantages, it has not been widely applied to spatial arch bridges. Thus, this article analyses the difference between the structural behavior of spatial arch bridges with Nielsen-type cable arrangements with respect to those with classical vertical hanger configurations. The main goal is to verify whether the known effectiveness of the Nielsen cable arrangement for classical arch bridges is still preserved when applied to spatial arch bridges. In order to achieve this objective, and as the first part of our study, a set of different all-steel bridges composed of vertical and inclined arches with straight decks have been compared for both cable arrangements. As a major conclusion, for planar vertical arch bridges, the Nielsen-type cable arrangement is always the most effective. In addition, it also seems that, for spatial arch bridges composed of a straight deck and an inclined arch, it still keeps most of its effectiveness as long as the arch is moderately inclined.

The Study on Shape Behavior of Nielsen Arch Bridge Considering Rise Ratio (라이즈비를 고려한 닐센아치교의 형상 거동에 관한 연구)

  • Park, Soon-Eung;Park, Moon-Ho;Kim, Jin-Kyu;Roh, Woo-Hyuk;Cho, Seong-Uk;Ryu, Ji-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.3
    • /
    • pp.161-168
    • /
    • 2010
  • Recently, bridges have been momenttous as not only regarding function but also concerning aesthetics. However, when beauty is considered in the bridge, it is also essential that stability and economics be considered. Besides, when considering stability, an arch bridge is one of the most stable structures. The most important element is a rise ratio when regarding beauty and economics of arch bridges. The effect of dead load and DB24 load have been considered to decide proper rise ratio. Therefore, in this study, examined the value of moment, displacement and member forces, in the variation of the rise ratio of arch bridges. The most optimum shape of Nielsen arch bridges has determined by analyzing member forces, moments and displacement with parameters of rise ratio and angle of vertical members. By comparison between values, the hanger types have been also considered to derive the optimum shape of Nielsen arch bridge.

  • PDF

Estimation of Wind Resistance Capacity of Nielsen Arch Bridge Based on Measured Data From Monitoring System (모니터링 시스템의 계측자료를 기반으로 한 닐슨아치 교량의 내풍 안정성 평가)

  • Lee, Deok Keun;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.56-64
    • /
    • 2013
  • The wind resistant capacity of bridges with a span of less than 200m is typically evaluated by Wind Resistant Design Manual for Highway Bridges in Japan. Also, the first vertical frequency plays an important role in the evaluation of their aerodynamic performance. An unexpected vortex-induced vibration of Nielsen arch bridge with span of 183m designed by this manual has been measured by monitoring system during typhoon. The amplitude of vibrations was about 2 times than the allowable vibration displacement. This paper presents the feature of vortex-induced vibration of this Nielsen arch bridge based on measured wind velocity, wind direction, and responses at midspan of main girder. From the result of FFT, the $1^{st}$ mode shape of the bridge is antisymmetric and the $2^{nd}$ is symmetric. Also, the dominant vibration of the bridge is the $2^{nd}$ vertical mode. According to these results, the $2^{nd}$ vertical vibration mode of this Nielsen arch bridge is prior to the first for the estimation of wind resistance capacity.

Opitmal Design Technique of Nielsen Arch Bridges by Using Genetic Algorithm (유전자 알고리즘을 이용한 닐센아치교의 최적설계기법)

  • Lee, Kwang Su;Chung, Young Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.361-373
    • /
    • 2009
  • Using the genetic algorithm, the optimal-design technique of the Nielsen arch bridge was proposed in this paper. The design parameters were the arch-rise ratio and the steel weight ratio of the Nielsen arch bridge, and optimal-design techniques were utilized to analyze the behavior of the bridge. The optimal parameter values were determined for the estimated optimal level. The parameter determination requires the standardization of the safety, utility, and economic concepts as the critical factors of a structure. For this, a genetic algorithm was used, whose global-optimal-solution search ability is superior to the optimization technique, and whose object function in the optimal design is the total weight of the structure. The constraints for the optimization were displacement, internal stress, and time and space. The structural analysis was a combination of the small displacement theory and the genetic algorithm, and the runtime was reduced for parallel processing. The optimal-design technique that was developed in this study was employed and deduced using the optimal arch-rise ratio, steel weight ratio, and optimal-design domain. The optimal-design technique was presented so it could be applied in the industry.

Influence of stiffened hangers on the structural behavior of all-steel tied-arch bridges

  • Garcia-Guerrero, Juan M.;Jorquera-Lucerga, Juan J.
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.479-495
    • /
    • 2019
  • In tied-arch bridges, the way the arch and the deck are connected may become crucial. The deck is usually suspended from hangers made out of steel pinned cables capable of resisting axial forces only. However, a proper structural response may be ensured by fixing and stiffening the hangers in order to resist, additionally, shear forces and bending moments. Thus, this paper studies the effect of different pinned and stiffened hanger arrangements on the structural behavior of the tied-arch bridges, with the intention of providing designers with useful tools at the early steps of design. Longitudinally and transversally stiffened hangers (and the effect of hinges at the hangers and their locations) are studied separately because the in-plane and the out-of-plane behavior of the bridge are uncoupled due to its symmetry. As a major conclusion, regarding the in-plane behavior, hangers composed of cables (either with vertical, $Nielsen-L\ddot{o}hse$ or network arrangements) are recommended due to its low cost and ease of erection. Alternatively, longitudinally stiffened hangers, fixed at both ends, can be used. Regarding the out-of-plane behavior, and in addition to three-dimensional arrangements of cables, of limited effectiveness, transversally stiffened hangers fixed at both ends are the most efficient arrangement. A configuration almost as efficient and, additionally, cheaper and easier to build can be achieved by locating a hinge at the end corresponding to the most flexible structural element (normally the arch). Its efficiency is further improved if the cross-section tapers from the fixed end to the pinned end.