• 제목/요약/키워드: Nicotinic acetylcholine receptor

검색결과 55건 처리시간 0.024초

Inhibitory Effects of Quercetin on Muscle-type of Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

  • Lee, Byung-Hwan;Shin, Tae-Joon;Hwang, Sung-Hee;Choi, Sun-Hye;Kang, Ji-Yeon;Kim, Hyeon-Joong;Park, Chan-Woo;Lee, Soo-Han;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권4호
    • /
    • pp.195-201
    • /
    • 2011
  • The flavonoid quercetin is a low molecular weight compound generally found in apple, gingko, tomato, onion and other red-colored fruits and vegetables. Like other flavonoids, quercetin has diverse pharmacological actions. However, relatively little is known about the influence of quercetin effects in the regulation of ligand-gated ion channels. Previously, we reported that quercetin regulates subsets of nicotinic acetylcholine receptors such as ${\alpha}3{\beta}4$, ${\alpha}7$ and ${\alpha}9{\alpha}10$. Presently, we investigated the effects of quercetin on muscle-type of nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding human fetal or adult muscle-type of nicotinic acetylcholine receptor subunits. Acetylcholine treatment elicited an inward peak current ($I_{ACh}$) in oocytes expressing both muscle-type of nicotinic acetylcholine receptors and co-treatment of quercetin with acetylcholine inhibited $I_{ACh}$. Pre-treatment of quercetin further inhibited $I_{ACh}$ in oocytes expressing adult and fetal muscle-type nicotinic acetylcholine receptors. The inhibition of $I_{ACh}$ by quercetin was reversible and concentration-dependent. The $IC_{50}$ of quercetin was $18.9{\pm}1.2{\mu}M$ in oocytes expressing adult muscle-type nicotinic acetylcholine receptor. The inhibition of $I_{ACh}$ by quercetin was voltage-independent and non-competitive. These results indicate that quercetin might regulate human muscle-type nicotinic acetylcholine receptor channel activity and that quercetin-mediated regulation of muscle-type nicotinic acetylcholine receptor might be coupled to regulation of neuromuscular junction activity.

Quercetin Inhibits ${\alpha}3{\beta}4$ Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

  • Lee, Byung-Hwan;Hwang, Sung-Hee;Choi, Sun-Hye;Shin, Tae-Joon;Kang, Ji-Yeon;Lee, Sang-Mok;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권1호
    • /
    • pp.17-22
    • /
    • 2011
  • Quercetin mainly exists in the skin of colored fruits and vegetables as one of flavonoids. Recent studies show that quercetin, like other flavonoids, has diverse pharmacological actions. However, relatively little is known about quercetin effects in the regulations of ligand-gated ion channels. In the previous reports, we have shown that quercetin regulates subsets of homomeric ligand-gated ion channels such as glycine, 5-$HT_{3A}$ and ${\alpha}7$ nicotinic acetylcholine receptors. In the present study, we examined quercetin effects on heteromeric neuronal ${\alpha}3{\beta}4$ nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding bovine neuronal ${\alpha}3$ and ${\beta}4$ subunits. Treatment with acetylcholine elicited an inward peak current ($I_{ACh}$) in oocytes expressing ${\alpha}3{\beta}4$ nicotinic acetylcholine receptor. Co-treatment with quercetin and acetylcholine inhibited $I_{ACh}$ in oocytes expressing ${\alpha}3{\beta}4$ nicotinic acetylcholine receptors. The inhibition of $I_{ACh}$ by quercetin was reversible and concentration-dependent. The half-inhibitory concentration ($IC_{50}$) of quercetin was $14.9{\pm}0.8\;{\mu}M$ in oocytes expressing ${\alpha}3{\beta}4$ nicotinic acetylcholine receptor. The inhibition of $I_{ACh}$ by quercetin was voltage-independent and non-competitive. These results indicate that quercetin might regulate ${\alpha}3{\beta}4$ nicotinic acetylcholine receptor and this regulation might be one of the pharmacological actions of quercetin in nervous systems.

Quantitative Structure Activity Relationship between Diazabicyclo-[4.2.0]octanes Derivatives and Nicotinic Acetylcholine Receptor Agonists

  • Kim, Eun-Ae;Jung, Kyoung-Chul;Sohn, Uy-Dong;Im, Chae-Uk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권1호
    • /
    • pp.55-59
    • /
    • 2009
  • Three dimensional quantitative structure activity relationship between diazabicyclo[4.2.0]octanes and nicotinic acetylcholine receptor($h{\alpha}4{\beta}2$ and $h{\alpha}3{\beta}4$) agonists was studied using comparative molecular field analysis(CoMFA) and comparative molecular similarity indices analysis(CoMSIA). From 11 CoMFA and CoMSIA models, CoMSIA with steric and electrostatic fields gave the best predictive models($q^2=0.926$ and 0.945, ${r^2}_{ncv}=0.983$ and 0.988). This study can be used to develop potent $h{\alpha}4{\beta}2$ receptor agonists with low activity on $h{\alpha}3{\beta}4$ subtype.

Immobilization and Characterization of a Liposome-Mediated Reconstituted Nicotinic Acetylcholine Receptor

  • Suh, Jeong-Ihn;Palk, Bo-Hyun;Oh, Se-Zu;Suh, Jung-Hun;Cho, Key-Seung;Palk, Young-Ki
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.155-161
    • /
    • 1995
  • A nicotinic acetylcholine receptor (nAchR) isolated from the electric tissues of Torpedo californica has been reconstituted into a vesicle comprising a bifunctional azo-ligand (Bae 1) compound, and a liposome containing phospholipids and cholesterol (1 : 1, w/w). The liposome-mediated reconstituted receptor showed a concentration-dependent response to cholinergic drugs in a lithium ion flux assay. This liposome-mediated reconstituted nAchR was immobilized onto an electrode using various synthetic polymers which were tested for their response to the cholinergic ligands. The immobilized nAchR not only exhibited a linear response to a wide range of cholinergic ligand concentrations but also retained an operational stability which lasted for longer than 6 days. Thus, this result provides a basis for application of the immobilized nAchR-based biosensor in detecting cholinergic ligands in vitro.

  • PDF

Differential Effect of Bovine Serum Albumin on Ginsenoside Metabolite-Induced Inhibition of ${\alpha}3{\beta}4$ Nicotinic Acetylcholine Receptor Expressed in Xenopus Oocytes

  • Lee, Jun-Ho;Jeong, Sang-Min;Lee, Byung-Hwan;Kim, Dong-Hyun;Kim, Jong-Hoon;Kim, Jai-Il;Lee, Sang-Mok;Nah, Seung-Yeol
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.868-873
    • /
    • 2003
  • Ginsenosides, major active ingredients of Panax ginseng, that exhibit various pharmacological and physiological actions are transformed into compound K (CK) or M4 by intestinal microorganisms. CK is a metabolite derived from protopanaxadiol (PD) ginsenosides, whereas M4 is a metabolite derived from protopanaxatriol (PT) ginsenosides. Recent reports shows that ginsenosides might playa role as pro-drugs for these metabolites. In present study, we investigated the effect of bovine serum albumin (BSA), which is one of major binding proteins on various neurotransmitters, hormones, and other pharmacological agents, on ginsenoside $Rg_{2-}$, CK-, or M4-induced regulation of $\alpha3\beta4$ nicotinic acetylcholine (ACh) receptor channel activity expressed in Xenopus oocytes. In the absence of BSA, treatment of ACh elicited inward peak current ($I_{Ach}$) in oocytes expressing $\alpha3\beta4$ nicotinic ACh receptor. Co-treatment of ginsenoside $Rg_2$, CK, or M4 with ACh inhibited IAch in oocytes expressing $\alpha3\beta4$ nicotinic ACh receptor with reversible and dose-dependent manner. In the presence of 1% BSA, treatment of ACh still elicited $I_{Ach}$ in oocytes expressing $\alpha3\beta4$ nicotinic ACh receptor and co-treatment of ginsenoside $Rg_2$ or M4 but not CK with ACh inhibited $I_{Ach}$ in oocytes expressing $\alpha3\beta4$ nicotinic ACh receptor with reversible and dose-dependent manner. These results show that BSA interferes the action of CK rather than M4 on the inhibitory effect of $I_{Ach}$ in oocytes expressing $\alpha3\beta4$ nicotinic ACh receptor and further suggest that BSA exhibits a differential interaction on ginsenoside metabolites.

Activation of acetylcholine receptor elicits intracellular Ca2+ mobilization, transient cytotoxicity, and induction of RANKL expression

  • Heo, Seong-Jong;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • 제41권3호
    • /
    • pp.119-123
    • /
    • 2016
  • Acetylcholine receptors (AChR) including muscarinic and nicotinic AChR are widely expressed and mediate a variety of physiological cellular responses in neuronal and non-neuronal cells. Notably, a functional cholinergic system exists in oral epithelial cells, and nicotinic AChR (nAChR) mediates cholinergic anti-inflammatory responses. However, the pathophysiological roles of AChR in periodontitis are unclear. Here, we show that activation of AChR elicits increased cytosolic $Ca^{2+}([Ca^{2+}]_i)$, transient cytotoxicity, and induction of receptor activator of nuclear factor kappa-B ligand (RANKL) expression. Intracellular $Ca^{2+}$ mobilization in human gingival fibroblast-1 (hGF-1) cells was measured using the fluorescent $Ca^{2+}$ indicator, fura-2/AM. Cytotoxicity and induction of gene expression were evaluated by measuring the release of glucose-6-phosphate dehydrogenase and RT-PCR. Activation of AChR in hGF-1 cells by carbachol (Cch) induced $[Ca^{2+}]_i$ increase in a dose-dependent manner. Treatment with a high concentration of Cch on hGF-1 cells caused transient cytotoxicity. Notably, treatment of hGF-1 cells with Cch resulted in upregulated RANKL expression. The findings may indicate potential roles of AChR in gingival fibroblast cells in bone remodeling.

고려 인삼의 효능은 생체막 이온 채널 조절과 연관되어 있다는 증거들에 대하여

  • 나승열
    • 식품기술
    • /
    • 제18권2호
    • /
    • pp.52-58
    • /
    • 2005
  • 최근 20여년 동안 Panax ginseng의 다양한 효과가 연구 되어져 왔다. Panax ginseng의 주요 활성 성분인 ginsenosides는 오직 인삼에서만 발견되어지는 saponin이다. 최근 들어 신경, 非신경 또는 복합적으로 분포된 세포에서 ginsenoside가 $Ca^2+$, $K^+$,$Na^+$,$Cl^-$ channel이나 ligand gated ionchannel (5-HT3, nicotinic acetylcholine, NMDA receptor)과 같은 다양한 ion channel을 조절하는증거들이 발표되고 있다. Ginsenoside는 voltage-dependent $Ca^2+$, $K^+$,$Na^+$ channel의 활성을 억제하는 반면 $Ca^2+$-activated $Cl^-$ channel이나 $Ca^2+$-activated $K^+$ channel의 활성은 증가 시키는 것으로 나타났다. 또한 흥분성 ligand-gated ion channel인 $5-HT_3$, nicotinic acetylcholine, NMDA receptor의 활성은 억제한다. 본 총설에서는 현재까지 알려진 ion channel 활성에 대한 ginsenoside의 조절작용과 이것으로 인해 어떻게 생물학적 효능과 연결이 되어있는지에 대하여 이야기하고자 한다.

  • PDF

A Concise Synthetic Pathway for trans-Metanicotine Analogues

  • Park, Hae-Il;Jang, Jin-Hee;Sin, Kwan-Seog
    • Archives of Pharmacal Research
    • /
    • 제23권3호
    • /
    • pp.202-205
    • /
    • 2000
  • A convenient pathway for synthesis of trans-metanicotine analogues was developed. trans-Metanicotine, a subtype(${\alpha}4{\beta}2$)-selective ligand for neuronal nicotinic acetylcholine receptor, is under clinical phase for Alzheimer's disease. Zn-mediated allylation of allyl bromide and acetaldehyde followed by Heck reaction with 3-bromopyridine gave 5-pyridin-3-yl-pent-4-en-3-ol (2). Tosylation of 5-pyridin-3-yl-pent-4-en-3-ol followed by substitution reaction with methylamine in sealed tube gave methyl-(1-methyl-4-pyridin-3-yl-but-3-enyl)-amine (4) in good yields. Thus, trans-metanicotine analogues modified at the $\alpha$-position of the methylamino group with various functional groups can be obtained in 4 steps.

  • PDF

Insecticide Targets: Learning to Keep Up with Resistance and Changing Concepts of Safety

  • Casida, John E.;Quistad, Gary B.
    • Journal of Applied Biological Chemistry
    • /
    • 제43권4호
    • /
    • pp.185-191
    • /
    • 2000
  • Pest insect control is dependent on about 200 insecticides that work by relatively few mechanisms. The targets they disrupt are mostly involved in the nervous system, respiratory chain, growth and development, or the gut. The major nerve targets are: acetylcholinesterase for the organophosphates and methylcarbamates; the nicotinic acetylcholine receptor for the neonicotinoids; the $\gamma$-aminobutyric acid receptor for several chlorinated hydrocarbons and fipronil; the voltage-gated sodium channel for DDT and pyrethroids. Selection of resistant strains often confers cross-resistance to some or all other insecticides working at the same site. The toxicological properties of different compounds acting on the same target are increasingly considered together, summating the risk even though the compounds are of quite diverse chemical types. Continuing attention is also being given to secondary targets not involved in the primary mechanism of toxicity but instead in side effects that must be considered in the overall safety evaluation. Research on insecticide targets is important in learning to keep up with resistance and changing concepts and policies on safety. These relationships are illustrated by recent studies in the Environmental Chemistry and Toxicology Laboratory of the University of California at Berkeley.

  • PDF