• Title/Summary/Keyword: Nicotiana

Search Result 533, Processing Time 0.019 seconds

Three Different Viruses Isolated from Typical Weed Plants that Grown Adjacent to Common Crop Fields

  • Kwon, Sun-Jung;Choi, Hong-Soo;Han, Jung-Heon;La, Yong-Joon;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.16 no.6
    • /
    • pp.297-305
    • /
    • 2000
  • Weeds are widely grown in the field and are infected by many viruses. A survey was conducted to identify viruses infecting weeds in Korea. Virus-infected weed samples including Rorippa indica (L.) Hiern, R. islandica (Oed.) Bord, Crepidiastrum denticulatum (Houtt.) Pak & Kawanno, Achyranthes japonica (Miq.) Nakai, and Chrysanthemum boreale (Makino) Makino were collected in Kyonggi Province. These weeds were grown in the greenhouse and were isolated on 10 test plants. Several virus isolates were isolated fron infected tissues and were further studied by host range assay, serological test, electron microscopy (EM), reverse transcription-polymerase chain reaction (RT-PCR) and sequencing. Each isolated virus strain was mechanically transmitted to weeds and various hosts including Nicotiana spp., Brassica spp., Vigna unguiculata, Capsicum annuum, and Cucumis sativus and showed systemic mosaic, vein clearing, necrosis, mottle, malformation, chlorosis, and/or death of host plants in some cases. Each virus was then purified using infected leaves and observed by EM. From these results three viruses were isolated and identified as Turnip mosaic virus (TuMV), Broad bean wilt virus (BBWV), and Cucumber mosaic virus (CMV). RT-PCR using virus-specific oligonucleotide primers and the cloning were conducted to determine the nucleotide sequences of coat proteins of the three viruses their amino acid sequence were deduced. The amino acid sequence homologies were about 92.7 to 99.7%, 96.2 to 97.7%, and 93.9 to 98.6% to other reported TuMV, BBWV, and CMV strains, respectively. These results suggest that many weeds may serve as primary inoculum source of diseases caused by TuMV, BBWV, CMV and that the management of these viral diseases can be achieved through weed control.

  • PDF

Triplex Virion Capture (VC)/RT-PCR for Three Seed Transmissible Tobamoviruses of CGMMV, ZGMMV and KGMMV Occurring on Cucurbitaceae (박과 작물 종자전염 바이러스 3종(CGMMV, ZGMMV, KGMMV)의 간편한 동시진단 VC/RT-PCR 유전자 진단)

  • Cho, Jeom-Deog;Kim, Jeong-Soo;Lee, Sin-Ho;Chung, Bong-Nam
    • Research in Plant Disease
    • /
    • v.13 no.2
    • /
    • pp.82-87
    • /
    • 2007
  • The genetic diagnostic method of virion capture (VC)/RT-PCR was developed for the simultaneous detection of three rod shaped viruses of Cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus(KGMMV) and Zucchini green mottle mosaic virus (ZGMMV) transmitted by seed in Cucurbit. Out of 12 primer combinations for the three tobamoviruses, a primer set of CGMMV-C724, KGMMV-K513 and ZGMMV-Z407A was useful for mono and triplex VC/RT-PCR. The triplex VC/RT-PCR for the three tobamovirus in Cucurbit could detect specifically without interference among primers and/or plant species of watermelon, gourd, cucumber, melon, pumpkin, squash and Nicotiana benthamiana.

Variation in the Pathogenicity of Lily Isolates of Cucumber mosaic virus

  • Lee, Jin-A;Choi, Seung-Kook;Yoon, Ju-Yeon;Hong, Jin-Sung;Ryu, Ki-Hyun;Lee, Sang-Yong;Choi, Jang-Kyung
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.251-259
    • /
    • 2007
  • Two isolates of Cucumber mosaic virus (CMV) originated from lily plants, named Ly2-CMV and Ly8-CMV, were compared with their pathological features in several host plants. Ly2-CMV and Ly8-CMV could induce systemic mosaic symptom in Nicotiana benthamiana, but Ly2-CMV could not systemically infect tomato and cucumber plants that have been used for CMV-propagative hosts. While Fny-CMV used as a control infected systemically the same host plants, producing typical CMV symptoms. Ly8-CMV could infect systemically two species of tobacco (N. tabacum cv. Xanthi-nc and N. glutinosa) and zucchini squash (Curcubita pepo), but Ly2 failed systemic infection on these plants. As resulted from tissue-print immunoblot assay, different kinetics of systemic movement between Ly2-CMV and Ly8-CMV were crucial for systemic infection in tobacco (cv. Xanthi-nc). Sequence analysis of full-length genome of two lily isolates showed Ly2 and Ly8 belonged to subgroup IA of CMV. The lily isolates shared overall 98 % sequence identity in their genomes. Coat protein, 3a protein, and 2b protein involved in virus movement was highly conserved in genomes of the isolates Ly2 and Ly8. Although there is the low frequency of recombinants and reassortants in natural CMV population, phylogenetic analysis of each viral protein among a number of CMV isolates suggested that genetic variation in a defined population of CMV lily isolates was stochastically produced.

A Rice Gene Homologous to Arabidopsis AGD2-LIKE DEFENSE1 Participates in Disease Resistance Response against Infection with Magnaporthe oryzae

  • Jung, Ga Young;Park, Ju Yeon;Choi, Hyo Ju;Yoo, Sung-Je;Park, Jung-Kwon;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.357-362
    • /
    • 2016
  • ALD1 (ABERRANT GROWTH AND DEATH2 [AGD2]-LIKE DEFENSE1) is one of the key defense regulators in Arabidopsis thaliana and Nicotiana benthamiana. In these model plants, ALD1 is responsible for triggering basal defense response and systemic resistance against bacterial infection. As well ALD1 is involved in the production of pipecolic acid and an unidentified compound(s) for systemic resistance and priming syndrome, respectively. These previous studies proposed that ALD1 is a potential candidate for developing genetically modified (GM) plants that may be resistant to pathogen infection. Here we introduce a role of ALD1-LIKE gene of Oryza sativa, named as OsALD1, during plant immunity. OsALD1 mRNA was strongly transcribed in the infected leaves of rice plants by Magnaporthe oryzae, the rice blast fungus. OsALD1 proteins predominantly localized at the chloroplast in the plant cells. GM rice plants over-expressing OsALD1 were resistant to the fungal infection. The stable expression of OsALD1 also triggered strong mRNA expression of PATHOGENESIS-RELATED PROTEIN1 genes in the leaves of rice plants during infection. Taken together, we conclude that OsALD1 plays a role in disease resistance response of rice against the infection with rice blast fungus.

Rpi-blb2-Mediated Hypersensitive Cell Death Caused by Phytophthora infestans AVRblb2 Requires SGT1, but not EDS1, NDR1, Salicylic Acid-, Jasmonic Acid-, or Ethylene-Mediated Signaling

  • Oh, Sang-Keun;Kwon, Suk-Yoon;Choi, Doil
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.254-260
    • /
    • 2014
  • Potato Rpi-blb2 encodes a protein with a coiled-coil-nucleotide binding site and leucine-rich repeat (CC-NBSLRR) motif that recognizes the Phytophthora infestans AVRblb2 effector and triggers hypersensitive cell death (HCD). To better understand the components required for Rpi-blb2-mediated HCD in plants, we used virus-induced gene silencing to repress candidate genes in Rpi-blb2-transgenic Nicotiana benthamiana plants and assayed the plants for AVRblb2 effector. Rpi-blb2 triggers HCD through NbSGT1-mediated pathways, but not NbEDS1- or NbNDR1-mediated pathways. In addition, the role of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) in Rpi-blb2-mediated HCD were analyzed by monitoring of the responses of NbICS1-, NbCOI1-, or NbEIN2-silenced or Rpi-blb2::NahG-transgenic plants. Rpi-blb2-mediated HCD in response to AVRblb2 was not associated with SA accumulation. Thus, SA affects Rpi-blb2-mediated resistance against P. infestans, but not Rpi-blb2-mediated HCD in response to AVRblb2. Additionally, JA and ET signaling were not required for Rpi-blb2-mediated HCD in N. benthamiana. Taken together, these findings suggest that NbSGT1 is a unique positive regulator of Rpi-blb2-mediated HCD in response to AVRblb2, but EDS1, NDR1, SA, JA, and ET are not required.

Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

  • Lim, Hyoun-Sub;Lee, Mi Yeon;Moon, Jae Sun;Moon, Jung-Kyung;Yu, Yong-Man;Cho, In Sook;Bae, Hanhong;DeBoer, Matt;Ju, Hojong;Hammond, John;Jackson, Andrew O.
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.17-30
    • /
    • 2013
  • Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treat-ments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.

Modulation of Quorum Sensing in Acyl-homoserine Lactone-Producing or -Degrading Tobacco Plants Leads to Alteration of Induced Systemic Resistance Elicited by the Rhizobacterium Serratia marcescens 90-166

  • Ryu, Choong-Min;Choi, Hye Kyung;Lee, Chi-Ho;Murphy, John F.;Lee, Jung-Kee;Kloepper, Joseph W.
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.182-192
    • /
    • 2013
  • Numerous root-associated bacteria (rhizobacteria) are known to elicit induced systemic resistance (ISR) in plants. Bacterial cell-density-dependent quorum sensing (QS) is thought to be important for ISR. Here, we investigated the role of QS in the ISR elicited by the rhizobacterium, Serratia marcescens strain 90-166, in tobacco. Since S. marcescens 90-166 produces at least three QS signals, QS-mediated ISR in strain 90-166 has been difficult to understand. Therefore, we investigated the ISR capacity of two transgenic tobacco (Nicotiana tabacum) plants that contained either bacterial acylhomoserine lactone-producing (AHL) or -degrading (AiiA) genes in conjunction with S. marcescens 90-166 to induce resistance against bacterial and viral pathogens. Root application of S. marcescens 90-166 increased ISR to the bacterial pathogens, Pectobacterium carotovorum subsp. carotovorum and Pseudomonas syringae pv. tabaci, in AHL plants and decreased ISR in AiiA plants. In contrast, ISR to Cucumber mosaic virus was reduced in AHL plants treated with S. marcescens 90-166 but enhanced in AiiA plants. Taken together, these data indicate that QS-dependent ISR is elicited by S. marcescens 90-166 in a pathogen-dependent manner. This study provides insight into QS-dependent ISR in tobacco elicited by S. marcescens 90-166.

Combining-Ability and Heterosis for Mutant Character of Quantitative Characters in Flue-Cured Tobacco Varieties(Nicotiana tabacum L) (황색종 연초에 있어서 변이체의 조합능력 및 Heterosis)

  • Jeong, Seok-Hun;Lee, Seung-Cheol;Kim, Heung-Bae
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.1
    • /
    • pp.34-48
    • /
    • 1993
  • This experiment were conducted to investigate heterosis and combining ability for several mutant characters by analyzing dialled crosses of flue-cured tobacco. In a dialled cross of 3 flue-cured varieties and the mutant line 83H -5, the heterosis was somewhat higher in Fl than in F2. For growth character, the heterosis was 0.28-6.03% in plant height, leaf number, leaf shape index and yield, and was 43.2% for bacterial wilt disease index. The mutant line 83H-5 showed significantly negative GCA effect for plant height, leaf width and bacterial wilt disease index in Fl and F2, leaf length in F2, and positive GCA effect for total alkaloids, total nitrogen in Fl and days to flower in F2, respectively. Specific combining ability(SCA) in 83H-5 x Hicks was significant in negative effect for leaf length(F2), number of leaves(F2), leaf shape(F1, F2), bacterial wilt(F2) and alkaloids(F1), and in 83H-5 x NC 2326 in positive effect for leaf length(F1, F2) and leaf width(F2), and for 83H-5 x NC 82 in positive effect for plant height(F1, F2) and leaf width(F2), and for 83H-5 x NC 82 in Positive effect for Plant height(F1, F2), leaf length(F2) and yield(F1, F2).

  • PDF

Deletion Mutation of Pokeweed Antiviral Protein II Gene and Development of PVY-VN Resistant Tobacco Plants (미국자리공 항바이러스 단백질 II 유전자의 돌연변이 및 PVY-VN 저항성 담배식물체 생산)

  • 강신웅;이영기;박성원;한규웅;김선원;이종철;이청호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.2
    • /
    • pp.123-132
    • /
    • 2001
  • In order to transform pokeweed antiviral protein cDNA to tobacco plant, total RNA was extracted from Phytolacca americana. PAP-II cDNA was synthesized from purified total RNA via RT-PCR and subcloned to recombinant vector pBluescript II SK-. 10 deletion mutant PAP-II cDNA fragments which were sequentially deleted from N-terminal by 90bp were synthesized from PAP-II cDNA except leading frame by PCR with primers designed in our laboratory. To select non-cytotoxic clone, pAc55M was constructed with yeast expression vector pAc55 and multicloning site(MCS). Sequentially deleted mutant PAP-II cDNAs were cloned on downstream of gall promoter of pAc55M. 6 non-cytotoxic deletion mutant PAP-II cDNA were selected. Selected cDNAs were cloned into plant expression vector pKGT101BH for transformation of these clones to plant through Agrobacterium tumefacience. After cloning, recombinant pKGT101BH carrying deleted mutant PAP-IIcDNA were transformed to Nicotiana tabacum cv. NC567. Transformed tobacco plants cultured on shooting and rooting media were transfered to green-house. About four weeks later, these plants were infected with physically infection using carborandum with PVY-VN strain. After 4 weeks, plants resistant to virus were selected , and seeds of these plants were gathered. Southern blot hybridization showed deleted fragments by 220bp and 420bp, so resistant ability of these plants is due to mutant PAP-II cDNA.

  • PDF

Photosynthetic Characterization of Transgenic Tobacco Plant, by Transformation of Chlorophyll a/b Binding Protein Gene of Korean Ginseng (인삼의 Chlorophyll a/b Binding Protein유전자를 도입한 연초의 광합성 특성)

  • 이기원;채순용;김갑식;박성원;황혜연;이영복
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.2
    • /
    • pp.109-114
    • /
    • 2001
  • A CAB cDNA vector(pKGCAB), encoding the light harvesting chlorophyll a/b binding protein in Korean ginseng (Panax ginseng C. A. Meyer), was constructed with the CaMV35S promoter of plant expression vector. The chimeric vector was transformed into tobacco(Nicotiana tabacum cv. NC 82) using Agrobacterium tumefaciens LBA 4404 strain, and the transgenic tobacco plant CAB-TP2 was selected. Photosynthetic rates of the CAB-TP2 plant at before-flowering stage were increased about 20% under low irradiance conditions of quantum 100 and 500 $\mu$mol.m$^{-2}$ s$^{-1}$ , however, the rates were similar to those of NC 82 under quantum 1000 and 2000 $\mu$mol.m$^{-2}$ s$^{-1}$ conditions. The plants were germinating under low- or normal irradiance condition and the quantum yield of photosystem III were measured. The differences of the Fv/Em values between conditions were 0.07 and 0.01 in NC 82 and CAB-TP2, respectively. The mature leaves in the position 8-10 of the CAB-TP2 at before-flowering stage revealed l0% higher Fv/Fm values in range of 0.759 to 0.781 and 40% more chlorophyll contents of 70-93mg/$m\ell$ than those of normal NC 82. These data suggest the possibility that the increase in photosynthetic activity of leaves under low light intensity in the canopy of CAB-TP2 transgenic tobacco might lead to increase the quality of lower tobacco leaves.

  • PDF