• Title/Summary/Keyword: Nickel_Titanium

Search Result 213, Processing Time 0.054 seconds

THE CHANGE OF CANAL CONFIGURATION AFTER INSTRUMENTATION BY SEVERAL NICKEL-TITANIUM FILES IN THE SIMULATED CANAL WITH ABRUPT CURVATURE (수종의 엔진구동형 니켈-타이타늄 파일에 의한 급한 만곡의 근관 성형시 근관형태 변화에 대한 비교연구)

  • Lim, Jung-Jang;Kim, Dong-Jun;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2005
  • The purpose of this study was to evaluate which type of Ni-Ti files are able to maintain canal configuration better in the simulated canal with abrupt curvature near it's apex. Ninety six simulated root canals were made in epoxy resin and $\sharp$15 finger spreader was used as root canal templates. The simulated root canals were made with radius of curvature of 1.5mm, 3.0mm, 4.0mm, 6.0mm respectively and the angle of curvature of all simulated canals were adjusted to 90 degree. The simulated canals were instrumented by ProFile, ProTaper, Hero 642, and $K^3$ at a 300 rpm using crown-down pressureless technique. Pre-instrumented and post-instrumented images were taken by digital camera and were superimposed with Adobe Photos hop 6.0 program. Images were compared by image analysis program. The changes of canal width at the inner and outer side of the canal curvature. canal transportation were measured at 9 measuring point with 1 mm interval. Statistical analysis among the types of Ni-Ti files was performed using Kruskal-Wallis test and Mann-Whitney U-test. The result was that ProFile maintain original canal configuration better than other engine driven Ni-Ti files in the canals above 3.0mm radius of curvature, and in the 1.5mm radius of curvature, most of Ni-Ti flies were deformed or separated during instrumentation.

EFFECT OF CROSS-SECTIONAL AREA OF 6 NICKEL-TITANIUM ROTARY INSTRUMENTS ON THE FATIGUE FRACTURE UNDER CYCLIC FLEXURAL STRESS: A FRACTOGRAPHIC ANALYSIS (반복 굽힘 스트레스 하에서 전동식 니켈-티타늄 파일의 단면적의 크기가 피로파절에 미치는 영향 : 파절역학 분석)

  • Hwang, Soo-Youn;Oh, So-Ram;Lee, Yoon;Lim, Sang-Min;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.424-429
    • /
    • 2009
  • This study aimed to assess the influence of different cross-sectional area on the cyclic fatigue fracture of Ni-Ti rotary files using a fatigue tester incorporating cyclical axial movement. Six brands of Ni-Ti rotary files (ISO 30 size with. 04 taper) of 10 each were tested: Alpha system (KOMET), HeroShaper (MicroMega), K3 (SybronEndo), Mtwo (VDW), NRT (Mani), and ProFile (Dentsply). A fatigue-tester (Denbotix) was designed to allow cyclic tension and compressive stress on the tip of the instrument. Each file was mounted on a torque controlled motor (Aseptico) using a 1:20 reduction contra-angle and was rotated at 300 rpm with a continuous, 6 mm axial oscillating motion inside an artificial steel canal. The canal had a $60^{\circ}$ angle and a 5 mm radius of curvature. Instrument fracture was visually detected and the time until fracture was recorded by a digital stop watch. The data were analyzed statistically. Fractographic analysis of all fractured surfaces was performed to determine the fracture modes using a scanning electron microscope. Cross-sectional area at 3 mm from the tip of 3 unused Ni-Ti instruments for each group was calculated using Image-Pro Plus (Imagej 1.34n, NIH). Results showed that NRT and ProFile had significantly longer time to fracture compared to the other groups (p < .05). The cross-sectional area was not significantly associated with fatigue resistance. Fractographycally, all fractured surfaces demonstrated a combination of ductile and brittle fracture. In conclusion, there was no significant relationship between fatigue resistance and the cross-sectional area of Ni-Ti instruments under experimental conditions.

A COMPARISON OF THE SHAPING ABILITY OF FOUR ROTARY NICKEL-TITANIUM FILES IN SIMULATED ROOT CANALS (엔진구동형 NiTi 파일의 근관성형효과 비교)

  • Kim, Bo-Hye;Choi, Kyoung-Kyu;Park, Sang-Hyuk;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.88-95
    • /
    • 2010
  • The purpose of this study was to compare the root canal shaping ability of 4 rotary NiTi instruments in simulated root canals. For the preparation of thirty two curved root canals, Mtwo instruments using "single length"technique, and Profile, ProTaper Universal, and K3 using crown-down technique (N = 8) were used. All canal samples were prepared by reaching an apical canal size of #30. Pre- and post-instrumentation digital images were recorded and an assessment of canal shape was determined using a computer image analysis program SigmaScan Pro (Systat Software Inc., San Jose, CA, USA). The changes of the dimension of inner walls of canals, (2) the changes of the dimension of outer walls of canals, and (3) the centering ratio were measured at 7 measuring points, and then data were statistically analyzed using one-way ANOVA and Duncan's test. The results were as below; 1. The root canal shaping ability of Profile was significantly faster than that of other rotary NiTi instruments (p < 0.05). 2. The deformation and fracture of all instruments used for this study were not experienced. 3. In the degree of changes of the dimension of inner walls of canals, Profile demonstrated the lowest changes of the dimension of inner walls of canals except at the measuring points of the 1 and 2 mm (p < 0.05). However, the ProTaper Universal showed the highest changes of the dimension of inner walls of canals at all measuring points (p < 0.05). 4. In the degree of changes of the dimension of outer walls of canals, Mtwo demonstrated the lowest changse of the dimension of outer walls of canals except at the measuring point of the 1 mm (p < 0.05). However, Profile exhibited the highest changes of the dimension of outer walls of canals at the measuring points of 3 and 4 mm and ProTaper Universal and K3 showed the largest changes of the dimension of outer walls of canals at the measuring points of 1, 2, 6, and 7 mm (p < 0.05). 5. In degree of centering ratio, Profile demonstrated the least centering ratio comparing with the centering ratio shown by other NiTi instruments at the measuring points of 1, 4, 5, and 6 mm. Results suggest that in the coronal part of canal preparation, active cutting files such as ProTaper Universal may efficiently flare the canal orifice and form a better taper, and in the apical part of the canal, files which have a better centering ability such as Profile may maintain the original canal curvature and reduce the shaping time.