• Title/Summary/Keyword: Nickel titanium

Search Result 216, Processing Time 0.037 seconds

INFLUENCE OF NICKEL-TITANIUM SPREADER ON THE SEALING ABILITY IN LATERAL CONDENSATION TECHNIQUE (측방가압충전시 Nickel-Titanium spreader의 사용유무가 근관충전효과에 마치는 영향)

  • Min, Kyung-San;Hong, Chan-Ui;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.381-389
    • /
    • 2000
  • Lateral condensation with gutta-percha and sealer has been shown to provide an excellent apical seal; however, the lateral condensation technique has demonstrated less favorable apical leakage results in curved canals when compared with straight canals. Placement of endodontic spreaders to within 1 to 2mm of the root canal working length has been advocated for optimum gutta-percha obturation. Due to their stiffness, stainless-steel(SS) spreaders will often fail to achieve this position in curved canals. Newly marketed nickel-titanium(NT) spreaders may offer an advantage in this regard due to the increased flexibility of these instruments. The purpose of this study was to evaluate the effect of NT finger spreader on the sealing ability in lateral condensation technique, compared with conventional SS finger spreader. Twenty four standardized resin models simulating curved canals(30 degree) were randomly placed into 2 groups and instrumented to a #30 master apical file size with Ni-Ti Profile .04 taper series using step down technique. Each groups was obturated with standardized gutta-percha cone by standard lateral condensation technique using SS finger spreader, NT finger spreader. And then, each model was sectioned horizontally with microtome at 1, 2, 3, 4, 5mm levels from the apex. At each of 5 levels, ratio of the area of gutta-percha was obtained by calculating the area of gutta-percha to the total area of the canal. The data collected were then analyzed statistically using a t test for independent samples. The results as follows ; 1. The total mean ratio of area of gutta-percha was 89.20${\pm}$7.00(%) for SS spreader group. 92.20${\pm}$5.17(%) for NT spreader group. There was statistically significant difference between each group(p<0.05). 2. At 3mm level, the mean ratio of area of gutta-percha was 88.32${\pm}$5.41(%) for SS spreader group, 95.25${\pm}$2.60(%) for NT spreader group. There was statistically significant difference between each group(p<0.05). At 1,2,4mm levels, NT spreader group showed greater mean ratio of area of gutta-percha than SS spreader group, too. But there was no statistically significant difference. 3. At 5mm level, the mean ratio of area of gutta-percha was 91.83${\pm}$3.42(%) for SS spreader group, 87.91${\pm}$3.68(%) for NT spreader group. There was statistically significant difference between each group(p<0.05). This study concluded that the NT spreader demonstrated somewhat favorable apical sealing effect than SS spreader in prepared curved canals. The clinical use of NT spreaders may enhance our ability to create better apical seals in curved canals, but further studies in this area will help clarify some of the remaining areas with which practitioners are concerned, such as compaction forces exerted by NT spreaders.

  • PDF

Simultaneous Synthesis and Sintering of Titanium Carbide by HPCS(High Pressure-Self Combustion Sintering) (고압연소 소결(HPCS)법에 의한 탄화티타늄(TiC)의 합성 및 소결)

  • 김지헌;최상욱;조원승;조동수;오장환
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.473-482
    • /
    • 1997
  • Titanium carbide(TiC) has a poor sinterability due to the strong covalent bond. Thus, it is generally fabricated by either hot pressing or pressureless-sintering at elevated temperature by the addition of sintering aids such as nickel(Ni), molybdenum(Mo) and cobalt(Co). However, these sintering methods have the following disadvantages; (1) the complicated process, (2) the high energy consumption, and (3) the possibility of leaving inevitable impurities in the product, etc. In order to reduce above disadvantages, we investigated the optimum conditions under which dense titanium carbide bodies could be synthesized and sintered simultaneously by high pressure self-combustion sintering(HPCS) method. This method makes good use of the explosive high energy from spontaneous exothermic reaction between titanium and carbon. The optimum conditions for the nearly full-densification were as follows; (1) The densification of sintered body becomes high by increasing the pressing pressure from 400kgf/$\textrm{cm}^2$ upto 1200 kgf/$\textrm{cm}^2$. (2) Instead of adding the coarse graphite or activated carbon, the fine particles of carbon black should be added as a carbon source. (3) The optimum molar ratio of carbon to titanium (C/Ti) was unity. In reality, titanium carbide body which were prepared under optimum conditions had relatively dense textures with the apparent porosity of 0.5% and the relative density of 98%.

  • PDF

Production of Titanium Powder by Electronically Mediated Reaction (EMR) (도전체 매개반응(EMR)법에 의한 Ti 분말 제조)

  • Park Il;Chu Yong Ho;Lee Chul Ro;Lee Oh Yeon
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.857-862
    • /
    • 2004
  • Production of titanium powder directly from tantalum oxides ($TiO_2$) pellet through an electronically mediated reaction (EMR) by calciothermic reduction has been investigated. Feed material ($TiO_2\;pellet$) and reductant (Ca-Ni alloy) were charged into electronically isolated locations in a molten calcium chloride ($CaCl_2$) bath at $950^{\circ}C$. The current flow through an external circuit between the feed (cathode) and reductant (anode) locations was monitored during the reduction of $TiO_2$. The current approximately 3.2A was measured during the reaction in the external circuit connecting cathode and anode location. After the reduction experiment, pure titanium powder with low nickel content was obtained even though Ca-Ni alloy was used as a reductant. These results demonstrate that titanium powder can be produced without direct physical contact between the feed and reductant. In certain experimental conditions, pure titanium powder with approximately $99.5\;mass\%$ purity was successfully obtained.

Orthodontic appliances and MR image artefacts: An exploratory in vitro and in vivo study using 1.5-T and 3-T scanners

  • Sonesson, Mikael;Al-Qabandi, Fahad;Mansson, Sven;Abdulraheem, Salem;Bondemark, Lars;Hellen-Halme, Kristina
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.63-71
    • /
    • 2021
  • Purpose: The aim of this study was to assess the artefacts of 12 fixed orthodontic appliances in magnetic resonance images obtained using 1.5-T and 3-T scanners, and to evaluate different imaging sequences designed to suppress metal artefacts. Materials and Methods: In vitro, study casts of 1 adult with normal occlusion were used. Twelve orthodontic appliances were attached to the study casts and scanned. Turbo spin echo (TSE), TSE with high readout bandwidth, and TSE with view angle tilting and slice encoding for metal artefact correction were used to suppress metal artefacts. Artefacts were measured. In vivo, 6 appliances were scanned: 1) conventional stainless-steel brackets; 2) nickelfree brackets; 3) titanium brackets; 4) a Herbst appliance; 5) a fixed retainer; and 6) a rapid maxillary expander. The maxilla, mandible, nasopharynx, tongue, temporomandibular joints, and cranial base/eye globes were assessed. Scores of 0, 1, 2, and 3 indicated no artefacts and minor, moderate, and major artefacts, respectively. Results: In vitro, titanium brackets and the fixed retainer created minor artefacts. In vivo, titanium brackets caused minor artefacts. Conventional stainless-steel and nickel free brackets, the fixed retainer, and the rapid maxillary expander caused major artefacts in the maxilla and mandible. Conventional stainless-steel and nickel-free brackets caused major artefacts in the eye globe (3-T). TSE with high readout bandwidth reduced image artefacts in both scanners. Conclusion: Titanium brackets, the Herbst appliance, and the fixed retainer caused minor artefacts in images of neurocranial structures(1.5-T and 3-T) when using TSE with high readout bandwidth.

Cyclic fatigue resistance of the WaveOne Gold Glider, ProGlider, and the One G glide path instruments in double-curvature canals

  • Kirici, Damla;Kustarci, Alper
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.4
    • /
    • pp.36.1-36.6
    • /
    • 2019
  • Objectives: The aim of this study was to compare the cyclic fatigue resistance of the WaveOne Gold Glider, ProGlider and One G glide path instruments in artificial doublecurvature canals. Materials and Methods: This study included 15 WaveOne Gold Glider (size 15/0.08), 15 ProGlider (size 16/0.08), and 15 One G (size 16/0.06) nickel titanium files. The files were used in accordance with the manufacturer's instructions until they were broken in artificial double-curvature canals made of stainless steel. The time to fracture was recorded via a digital stopwatch and the number of rotations until fracture was also calculated. The data were statistically analyzed via the Kruskal-Wallis test. Results: The highest average number of rotations until fracture of the files was found for the WaveOne Gold Glider, followed by ProGlider and One G in order. Statistically significant differences were present between all groups of files (p < 0.05). Conclusions: In our study, the resistance of the WaveOne Gold Glider nickel-titanium (Ni-Ti) file to cyclic fatigue in S-shaped curved canals was found to be higher than that of the ProGlider and One G Ni-Ti files.

Maxillary molar derotation and distalization by using a nickel-titanium wire fabricated on a setup model

  • Jung, Jong Moon;Wi, Young Joo;Koo, Hyun Mo;Kim, Min Ji;Chun, Youn Sic
    • The korean journal of orthodontics
    • /
    • v.47 no.4
    • /
    • pp.268-274
    • /
    • 2017
  • The purpose of this article is to introduce a simple appliance that uses a setup model and a nickel-titanium (Ni-Ti) wire for correcting the mesial rotation and drift of the permanent maxillary first molar. The technique involves bonding a Ni-Ti wire to the proper position of the target tooth on a setup model, followed by the fabrication of the transfer cap for indirect bonding and its transfer to the patient's teeth. This appliance causes less discomfort and provides better oral hygiene for the patients than do conventional appliances such as the bracket, pendulum, and distal jet. The treatment time is also shorter with the new appliance than with full-fixed appliances. Moreover, the applicability of the new appliance can be expanded to many cases by using screws or splinting with adjacent teeth to improve anchorage.