• 제목/요약/키워드: Nickel electroform

검색결과 3건 처리시간 0.019초

니켈쌀파메이트 전주층의 실시간 잔류응력 (Real-time Internal Stress of Nickel Sulfamate Electroform)

  • 김인곤;강경봉;이재근;권식철;김만;이주열
    • 한국표면공학회지
    • /
    • 제38권1호
    • /
    • pp.14-20
    • /
    • 2005
  • The control of internal stress is extremely important in electroforming because of the deliberately low adhesion between the electro form and the mandrel. Excessive tensile or compressive stress can cause distortion, separation problem, curling, peeling or separation of electroform prematurely from the mandrel, buckling and blistering. Nickel sulfamate bath has been widely used in electroforming because of its low internal stress and moderate hardness. In this study, real-time stress sensor has been used for stress control in chloride-free nickel sulfamate bath for 400 mm x 300 mm x 500 ㎛ nickel electroform. It was found that compressive stress found at low current density indicated the contamination of electrolyte, which is very useful in procuring buckling and peeling of electroform. No compressive stress is allowed for plate electroform. The real-time stress can also be used for accurate stress control of nickel electroform. The tensile stress was found to be increased slightly with increase in nickel electroform thickness, i.e., from initial 1.47 ksi to 2.02 ksi at 320 ㎛.

니켈 전주층의 인장 물성(1) (Tensile Properties of Nickel Electroform(l))

  • 김인곤;이재근;강경봉;권식철;김만;이주열
    • 한국표면공학회지
    • /
    • 제38권1호
    • /
    • pp.21-27
    • /
    • 2005
  • Tensile properties and hardness of nickel electroform from chloride-free nickel sulfamate electrolyte at 50℃ and PH 4.5 were investigated. Current density varied from 20 to 60 mA/㎠. The deposit thicknesses were 360, 480 and 980 ㎛. It was found in 480 ㎛ thick electroform that highest tensile and yield strengths and hardness of 83.7 ksi, 53.6 ksi and 216 DPH, respectively were obtained at a current density of 40 mA/㎠ and they were slightly decreased at 20 and 60 mA/㎠. However the ductility was lowest of 7.9% at 40 mA/㎠. Such a high strength and low ductility at 40 mA/㎠ seems to be related to the narrower columnar structure than those of other current densities. All the deposits exhibited pronounced necking behavior. Tensile strength, yield strength and ductility increased as the nickel electroform thickens. Initial strong (200) texture developed on stainless steel mandrel decreased and (111) and (220) textures increased as deposit thickness increased, whereas (200) texture was preferred as the current density increased.

니켈쌀파메이트 전주층의 물성과 미세구조 (Study on the Mechanical Properties and Microstructure of Nickel Sulfamate Electroform)

  • 김인곤
    • 한국표면공학회지
    • /
    • 제37권1호
    • /
    • pp.40-48
    • /
    • 2004
  • Hardness and internal stress are very important in nickel electroforming. Nickel sulfamate bath has been widely used in electroforming because of its low internal stress and moderate hardness. Nickel sulfamate bath without chloride was chosen to investigated the effect of plating variable such as temperature, PH, current density and sodium naphthalene trisulfonate as addition agent on the hardness and internal stress. It was found that hardness increased with increasing temperature and decreasing current density and ranged from 150∼310 DPH. The hardness was highest at $55^{\circ}C$ and 10∼40 mA/$\textrm{cm}^2$. The internal stress increased with increasing current density and decreasing temperature. It was minimum at PH 3.0∼3.8. Low internal stress within $\pm$1,500 psi was obtained at both $50^{\circ}C$ and $55^{\circ}C$ in 10-20 mA/$\textrm{cm}^2$. The addition of sodium naphthalene trisulfonate was found to be effective in refine columnar grains thus resulted in decreasing internal stress, increasing hardness and improving brightness.