• Title/Summary/Keyword: Nickel coating

Search Result 172, Processing Time 0.027 seconds

Application of an electroless copper coating in alkaline bath to preparation of the metal hydride electrode (금속 수소화물 전극제조에 있어서 알카리 무전해 구리 도금법의 응용)

  • CHOI, Jeon;PARK, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.3 no.2
    • /
    • pp.9-15
    • /
    • 1992
  • Electroless copper plating method using an alkaline bath have been employed in copper coating of the (LM)Ni4.5Co0.1MnO.2A10.2 hydrogen storage alloy powders for electrode preparation. The plating were conducted without any pretreatment of alloy powders. For the preparation of the electrodes, about 0.12g of the copper coated alloy powder (copper to alloy ratio 1/3 by weight) was compacted with pressure of 6 tons/cm2 at room temperature. The disk-type compacts had a diameter of 10mm and thickness of about 0.24mm. The electrode characteristics were examined through SEM observations and electrochemical measurements in a half cell. The electrochemical measurement showed that the maximum discharge capacity of the electrodes prepared by using alkaline bath were 245mAh per gram of coated alloy (327mAh per gram of alloy) and appeared a considerable degradation with increasing number of cycles. The decrease of the discharge capacity after 100 cycles was about 30% It can be suggested that, with a slight of improvement, this electroless copper plating method could be applied to the preparation of the rare earth-nickel based alloy electrode.

  • PDF

Analysis and structural design of various turbine blades under variable conditions: A review

  • Saif, Mohd;Mullick, Parth;Imam, Ashhad
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.11-24
    • /
    • 2019
  • This paper presents a review study for energy-efficient gas turbines (GTs) with cycles which contributes significantly towards sustainable usage. Nonetheless, these progressive engines, operative at turbine inlet temperatures as high as $1600^{\circ}C$, require the employment of highly creep resistant materials for use in hotter section components of gas turbines like combustion chamber and blades. However, the gas turbine obtain its driving power by utilizing the energy of treated gases and air which is at piercing temperature and pushing by expanding through the several rings of steady and vibratory blades. Since the turbine blades works at very high temperature and pressure, high stress concentration are observed on the blades. With the increasing demand of service, to provide adequate efficiency and power within the optimized level, turbine blades are to be made of those materials which can withstand high thermal and working load condition for longer cycle time. This paper depicts the recent developments in the field of implementing the best suited materials for the GTs, selection of proper Thermal Barrier Coating (TBC), fracture analysis and experiments on failed or used turbine blades and several other designing and operating factors which are effecting the blade life and efficiency. It is revealed that Nickel based Superalloys were promising, Cast Iron with Zirconium and Pt-Al coatings are used as best TBC material, material defects are the foremost and prominent reason for blade failure.

Mask Patterning for Two-Step Metallization Processes of a Solar Cell and Its Impact on Solar Cell Efficiency (태양전지 2 단계 전극형성 공정을 위한 마스크 패턴공정 및 효율에 대한 영향성 연구)

  • Lee, Chang-Joon;Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1135-1140
    • /
    • 2012
  • Two-step metallization processes have been proposed to achieve high-efficiency silicon solar cells, where the front-side grids are formed by silver plating after the formation of a nickel seed layer with a mask. Because the conventional mask patterning process is performed by an expensive selective printing method using either UV resist or phase change ink, however, the combination of a simple coating and laser-selective ablation processes is proposed in this study as an alternative means. As a masking material, the solar cell wafer was coated with either inexpensive wax having a low melting temperature or a fluorocarbon solution, and then, an electrode image was patterned by selectively removing the masking material using the laser. It was found that the fluorocarbon coating was not only superior to the wax coating in terms of pattern uniformity but it also increased the efficiency of the solar cell by 0.16%, as confirmed by statistical f and t tests.

Preparation and analysis of nickel-coated alumina by sonochemistry (음향화학법으로 니켈을 코팅한 알루미나의 제조 및 분석)

  • Kim, Jin-Woo;Choi, Sung-Woo;Lee, Chang-Seop
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.61-68
    • /
    • 2011
  • Ni-coated alumina was prepared by sonochemical method. To increase an efficiency of Ni coating on alumina, amorphous alumina was prepared by sol-gel method and Ni was coated to fine particles of alumina. Ni-coated alumina was prepared from various calcination temperatures ($500^{\circ}C$, $1,000^{\circ}C$), concentrations of Ni solution (0.01 M~0.2 M) and sonochemical reaction times (30 min, 2h). The prepared fine particles were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), and Particle Size Analyzer (PSA). The coating amount of Ni increased, as Ni concentration and ultrasonication time increased. The maximum amount of Ni was coated to fine particles of alumina, when Ni-coated alumina was prepared with 0.1 M concentration of Ni solution for 2 h of sonication time at $1000^{\circ}C$ of calcination temperature. The average particle size was in the range of 835.9 to 986.7 nm.

Measurement Algorithms of Sizing removed state using Image Process And Development of Carbon fibers with Electromagnetic shielding Performance (영상처리를 이용한 사이징 제거 상태 측정 알고리즘과 전자파 차폐 성능을 갖는 탄소 섬유 개발)

  • Cho, Joon-Ho;Jeon, Kwan-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.95-101
    • /
    • 2017
  • In this paper, the sizing removal condition for the pretreatment of composite materials is obtained numerically by applying an image processing algorithm and nickel-plated carbon fiber is fabricated by a dry process method to enhance its electromagnetic shielding performance. Sizings that are wrapped in a polymer type material during the manufacturing of carbon fiber should be removed for dry coating. A numerical value, that is the correlation, can be obtained by determining the regular pattern of the carbon fiber in the image taken by a scanning electron microscope (SEM) after the sizing is removed. The application of the proposed numerical method to the SEM image of the fiber after the sizing is removed with solution, compressed air, solution and compressed air (hybrid), showed that this method of eliminating the sizing is superior to the hybrid method. Then, by spreading the carbon fiber roll with the sizing removed, we were able to produce nickel plated carbon fiber by the roll-to-roll sputtering method. The electromagnetic shielding performance of the fabricated 30, 40 and 100 nickel coated carbon fibers was measured. The Korea Advanced Institute of Science and Technology evaluated the electromagnetic shielding performance of the 100 nickel-coated carbon fiber to have a maximum value of 73.2 (dB) and a minimum value of 66.7 (dB). This is similar to the electromagnetic shielding rate of copper and shows that this material can be used as a cable for EV / HEV automobiles.

Preparation of Electrically Conductive Composites Filled with Nickel Powder and MWCNT Fillers (다중벽 탄소나노튜브와 니켈 분말을 포함하는 전도성 복합체 제조)

  • Kim, Sunghoon;Park, Seonghwan;Kwon, Jaebeom;Ha, KiRyong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.410-418
    • /
    • 2016
  • In this study, we prepared electrically conducting composites using epoxy resin of diglycidyl ether of bisphenol A (DGEBA) as a matrix, triethylenetetramine (TETA) as a hardener and nickel powder or multi-walled carbon nanotubes (MWCNTs) grafted with $-NH_2$ groups (MWCNT-$NH_2$) as electrically conducting fillers. Electrical conductivity of composite films were measured by coating on the slide glass with a doctor blade. We measured modification reactions of MWCNT and reaction of MWCNT-$NH_2$ with DGEBA epoxy resin by fourier transform infrared spectrometer (FTIR), thermogravimetric analyzer (TGA) and elemental analyzer (EA). Morphology of composites was investigated by scanning electron microscope (SEM) and sheet resistances of composites were measured by 4-point probe. We found $(9.87{\pm}1.09){\times}10^4{\Omega}/sq$ of sheet resistance for epoxy composite containing both 40 wt% nickel powder and 0.5 wt% of MWCNT-$NH_2$ as fillers, equivalent to epoxy composite containing 53.3 wt% nickel powder only as a filler.

Mechanical and Tribological Properties of Pulse and Direct Current Electrodeposited Ni-TiO2 Nano Composite Coatings

  • Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.283-288
    • /
    • 2010
  • Ni-$TiO_2$ nano composite coatings were fabricated using pulse current electrodeposition technique at 100 Hz pulse frequency with a constant 50% pulse duty cycles and reference was taken with respect to the direct current (dc) electrodeposition. The properties of the composite coatings were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. Pulse electrodeposited composite has exhibited enhancement of (111), (220), and (311) diffraction lines with an attenuation of (200) line. The results demonstrated that the microhardness of composite coatings under pulse condition was significantly improved than that of pure nickel coating as well as dc electrodeposited Ni-$TiO_2$ composite coatings. Wear tracks have shown the less plastic deformation in pulse plated composite. Coefficient of friction was also found to be lower in pulse plated composite coatings as compared to dc plated composite coatings.

Alumina Ceramics Reinforced by Ni-coated Chopped Alumina Fiber

  • Kim, Hai-Doo;Lee, Kyu-Hwan
    • The Korean Journal of Ceramics
    • /
    • v.7 no.2
    • /
    • pp.74-79
    • /
    • 2001
  • Alumina composite reinforced by chopped alumina fiber was fabricated by filter-pressing the fiber slurry followed by the infiltration of alumina slurry. The chopped fiber was coated with nickel by electroless plating method. The green samples were densified by hot-pressing. Microstructures were studied by SEM and the mechanical properties such as bending strength and fracture toughness were measured. The resulting mechanical properties were analyzed in relation with processing parameters such as preform density and resulting microstructures. The load-displacement curve of the specimen with Ni interlayer but without Ni inclusion showed brittle fracture mode due to the direct contact between matrix and fiber. The load-displacement curve of the specimen with Ni interlayer and Ni inclusion in the matrix which is introduced by high applied pressure during specimen preparation showed non-brittle fracture mode due to the fiber pull-out and dutile phases in the matrix.

  • PDF

Evaluation of Thermal Durability of Thermal Barrier Coating and Change in Mechanical Behavior

  • Lee, Dong Heon;Kang, Nam Kyu;Lee, Kee Sung;Moon, Heung Soo;Kim, Hyung Tae;Kim, Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.314-322
    • /
    • 2017
  • This study investigates changes in the mechanical behavior, such as changes in indentation load-displacement curve, wear resistance and contact fatigue resistance of thermal barrier coatings (TBCs) by thermal cycling test and thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/superalloy are prepared; the highest temperature applied during thermal durability test is $1350^{\circ}C$. The results indicate that the porous TBCs have relatively longer lifetime during thermal cycling and thermal shock tests, while denser TBCs have relatively higher wear and contact fatigue resistance. The mechanical behavior is influenced by sintering of the TBCs by exposure to high temperature during tests.

Ni-P Coated Sn Powders as Anode for Lithium Secondary Batteries

  • Jo, Yong-Nam;Im, Dong-Min;Kim, Jae-Jung;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.88-93
    • /
    • 2007
  • Nano-sized Sn particles were coated with Ni-P layer using an electroless deposition method and their anodic performance was tested for lithium secondary batteries. Uniform coating layers were obtained, of which the thickness was controlled by varying the $Ni^{2+}$ concentration in the plating bath. It was found that the Ni-P layer plays two important roles in improving the anodic performance of Sn powder electrode. First, it prevents the inter-particle aggregation between Sn particles during the charge/discharge process. Second, it provides an electrical conduction pathway to the Sn particles, which allows an electrode fabrication without an addition of conductive carbon. A pseudo-optimized sample showed a good cyclability and high capacity ($>400mAh\;g^{-1}$) even without conductive carbon loading.