• 제목/요약/키워드: Nickel catalyst

검색결과 195건 처리시간 0.036초

Nickel Nanoparticles: An Ecofriendly and Reusable Catalyst for the Synthesis of 3,4-Dihydropyrimidine-2(1H)-ones via Biginelli Reaction

  • Sapkal, Suryakant B.;Shelke, Kiran F.;Shingate, Bapurao B.;Shingare, Murlidhar S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.351-354
    • /
    • 2010
  • Nickel nanoparticles (Ni NPs) appeared to exhibit the catalytic activity in one-pot cyclocondensation reaction for the preparation of 3,4-dihydropyrimidine-2(1H)-ones via Biginelli reaction from aromatic/heteroaromatic/aliphatic aldehydes, urea/thiourea and ethyl acetoacetate under microwave irradiation has been described. The UV absorbance spectra showed metallic Ni characteristics and appreciate with the particle size determined by Transmission electron microscopy (TEM). After reaction course the Ni NPs can be re-covered and reused without any apparent loss of activity.

ORTHO/PARA 수소의 전환에의 연구 (Study on the Conversion of Ortho to Para Hydrogen)

  • 김종팔;이광현
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.317-324
    • /
    • 2007
  • The conversion reaction of ortho to para hydrogen was studied. The percentage of ortho and para hydrogen is mainly dependent on the equilibrium temperature. Because this reaction is known to be accelerated by the catalyst such as nickel-silicate and ruthenium on silica, we focused in the test and development of the catalysts. We studied metal-silicates because they provide high metal dispersion on support. Nickel-silicate, ruthenium-silicate and mixed-silicate were prepared by the coprecipitation method and used in the reaction at the temperature of liquid nitrogen. The conversion was measured by the difference of thermal conductivity between reference gas and sample gas. The activation condition was important and it affected the activities of the catalysts. Nickel-silicate showed high activities. Ruthenium-silicate also showed relative high activities but mixed-silicate showed poor activities.

에틸렌 역확산화염을 열원으로 사용하여 촉매금속 기판 상에 합성한 탄소나노튜브와 탄소나노섬유 (Synthesis of Multi-walled Carbon Nanotubes and Nanofibers on a Catalytic Metal Substrate Using an Ethylene Inverse Diffusion Flame as a Heat Source)

  • 이교우;정종수;강경태;황정호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1304-1309
    • /
    • 2004
  • Synthesis of carbon nanotubes and nanofibers on a catalytic metal substrate, using an ethylene fueled inverse diffusion flame, was investigated. Multi-walled carbon nanotubes, with diameters of 20 - 60nm, were formed on the substrate coated with nickel-nitrate in the region of 5 - 6mm from the flame center along the radial direction. The gas temperature for this region was ranging from about 1400 to 900K. Nickel particles originated from the coated nickel-nitrate on the substrate were the major catalyst for the formation of the nanomaterials. HR-TEM and Raman spectrum revealed that synthesized carbon nanotubes had multi-walled structures with some defective graphite layers at walls.

  • PDF

Selective Hydrogenation of 1,3-Butadiene over Supported Nickel Catalyst Obtained from Nickel-Zirconia Solid Solution

  • Chang, Jong-San;Ryu, Jae-Oak;Lee, Jong-Min;Park, Sang-Eon;Hong, Do-Young;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권10호
    • /
    • pp.1512-1514
    • /
    • 2005
  • Catalytic properties of Ni-Zr$O_2$ catalysts prepared by coprecipitation have been studied for the gas-phase hydrogenation of 1,3-butadiene to butenes. The coprecipitation method led to the solid solution of Ni-Zr$O_2$, which contains highly resistant Ni species to thermal reduction with H2. Nickel species of the solid solution were highly dispersed in the ZrO2 lattice, so that the reduced catalysts were selective for hydrogenation of 1,3-butadiene to butenes (99.9%) even in the presence of 1-butene.

촉매법으로 제조한 나노탄소섬유의 미세구조 및 전기적 특성 제어 연구 (Characterization of Nanostructure and Electronic Properties of Catalytically Grown Carbon Nanofiber)

  • 김명수;우원준;송희석;임연수;이재춘
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.345-353
    • /
    • 2000
  • Carbon nanofibers were prepared from the decomposition of various carbon-containing gases over pure Ni, pure Fe and their alloys with Cu. They yields, properties, and structure of carbon nanofibers obtained from the various reaction conditions were analyzed. Type of reacting gas, reaction temperature and catalyst composition were changed as the reaction variable. With Ni-Cu catalysts, the maximum yields of carbon nanofibers were obtained at temperatures between 550 and 650$^{\circ}C$ according to the reacting gas mixtures of C2H2-H2, C2H4-H2 and C3H8-H2, and the surface areas of the carbon nanofibers produced were 20∼350㎡/g. In the case of CO-H2 mixture, the rapid deposition of carbon nanofibers occurred with Fe-Cu catalyst and the maximum yield were obtained around 550$^{\circ}C$ with the range of surface areas of 140∼170㎡/g. The electrical resistivity of carbon nanofiber regarded as the key property of filler for the application of electromagnetic interference shielding was very sensitive to the type of reactant gas and the catalyst composition ranging 0.07∼1.5Ωcm at a pressure of 10000 psi, and the resistivity of carbon nanofibers produced over pure nickel catalyst were lower than those over alloy catalysts. SEM observation showed that the carbon nanofibers produced had the diameters ranging 20∼300 nm and the straight structure of carbon nanofibers changed into the twisted or helical conformation by the variation of reacting gas and catalyst composition.

  • PDF

Vertically aligned carbon nanotubes grown on various substrates by plasma enhanced chemical vapor deposition

  • Han, Jae-hee;Moon, Byung-Sik;Yang, Won-Suk;Yoo, Ji-Beom;Park, Chong-Yun;Han, In-Taek;Lee, Nae-Sung;Kim, Chong-Min;Kim, Tae-Il
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제3권2호
    • /
    • pp.121-125
    • /
    • 1999
  • Vertically well aligned multiwall carbon nanotubes were grown on nickel coated different substrates by plasma enhanced hot filament chemical vapor deposition at low temperatures below 650$^{\circ}C$. Acetylene and ammonia gas were used as the carbon source and a catalyst. The surface roughness of nickel layer increased as NH3 etching time increased. The diameters of the nanotubes decreased and the density of nanotubes increased as NH3 etching time increased. diameter of nanotube was 30 to 70 nm. Nickel cap was observed on the top of the grown nanotube and very thin carbon amorphous layer was fonde on the nickel cap.

  • PDF

Characterization of NiSO4 Supported on Fe2O3 and Catalytic Properties for Ethylene Dimerization

  • Pae, Young-Il;Sohn, Jong-Rack
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1273-1279
    • /
    • 2007
  • The NiSO4 supported on Fe2O3 catalysts were prepared by the impregnation method. No diffraction line of nickel sulfate was observed up to 30 wt %, indicating good dispersion of nickel sulfate on the surface of Fe2O3. The addition of nickel sulfate to Fe2O3 shifted the phase transition of Fe2O3 (from amorphous to hematite) to higher temperatures because of the interaction between nickel sulfate and Fe2O3. 20-NiSO4/Fe2O3 containing 20 wt % of NiSO4 and calcined at 500 oC exhibited a maximum catalytic activity for ethylene dimerization. The initial product of ethylene dimerization was found to be 1-butene and the initially produced 1-butene was also isomerized to 2-butene during the reaction. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method.

알칼리 연료전지용 라니니켈 수소극에서 카본블랙의 첨가 (The Addition of Carbon Black to Raney Nickel Hydrogen Electrodes for Alkaline Fuel Cells)

  • 조장호;이상곤;조원일;김영채;이성철;이주성;문세기
    • 공업화학
    • /
    • 제8권6호
    • /
    • pp.927-933
    • /
    • 1997
  • 알칼리형 연료전지용 라니니켈 수소극에서 카본블랙이 전극 성능 및 촉매층 구조에 미치는 영향을 전기화학적 방법과 질소 흡착법등을 이용하여 조사되었다. 본 연구에서 라니니켈 수소극 촉매층의 최적 카본블랙 함량은 2wt% 였다. 카본블랙의 첨가는 한계전류밀도를 증가시켰으며, 이는 기액접촉면적의 증가에 기인한 것으로 사료된다. 또한 한계전류밀도에서의 속도결정단계는 수소가 기액접촉면에서녹는 단계일 가능성이 높은 것으로 조사되었다.

  • PDF

Copper/Nickel/Manganese Doped Cerium Oxides Based Catalysts for Hydrogenation of CO2

  • Toemen, Susilawati;Bakar, Wan Azelee Wan Abu;Ali, Rusmidah
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2349-2356
    • /
    • 2014
  • The recycling technology by the catalytic conversion is one of the most promising techniques for the $CO_2$ treatment of coal burning power plant flue gases. The conversion of $CO_2$ to valuable product of $CH_4$ can be used as a fuel to run the turbine for electricity generation. Through this technique, the amount of coal needed for the combustion in a gas turbine can be reduced as well as $CO_2$ emissions. Therefore, a series of catalysts based on cerium oxide doped with copper, nickel and manganese were prepared by impregnation method. From the characterization analysis, it showed that the prepared catalysts calcined at $400^{\circ}C$ were amorphous in structure with small particle size in the range below 100 nm. Meanwhile, the catalyst particles were aggregated and agglomerated with higher surface area of $286.70m^2g^{-1}$. By increasing the calcination temperature of catalysts to $1000^{\circ}C$, the particle sizes were getting bigger (> 100 nm) and having moderate crystallinity with lower surface area ($67.90m^2g^{-1}$). From the catalytic testing among all the prepared catalysts, Mn/Ce-75/$Al_2O_3$ calcined at $400^{\circ}C$ was assigned as the most potential catalyst which gave 49.05% and 56.79% $CO_2$ conversion at reaction temperature of $100^{\circ}C$ and $200^{\circ}C$, respectively.